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Abstract

This paper considers issues related to identi�cation, inference and computation in linearized

Dynamic Stochastic General Equilibrium (DSGE) models. We �rst provide a necessary and

su¢ cient condition for the local identi�cation of the structural parameters based on the (�rst

and) second order properties of the process. The condition allows for arbitrary relations be-

tween the number of observed endogenous variables and structural shocks and is simple to

verify. The extensions, including identi�cation through a subset of frequencies, partial iden-

ti�cation, conditional identi�cation and identi�cation under general nonlinear constraints, are

also studied. When lack of identi�cation is detected, the method can be further used to trace

out non-identi�cation curves. For estimation, restricting our attention to nonsingular systems,

we consider a frequency domain quasi-maximum likelihood (FQML) estimator and present its

asymptotic properties. The limiting distribution of the estimator can be di¤erent from results

in the related literature due to the structure of the DSGE model. Finally, we discuss a quasi-

Bayesian procedure for estimation and inference. The procedure can be used to incorporate

relevant prior distributions and is computationally attractive.
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1 Introduction

The formal quantitative analysis of DSGE models has become an important subject of modern

macroeconomics. It is typically conducted in the time domain using a state space representation

with the aid of Kalman or particle �ltering, see An and Schorfheide (2007) and Fernández-Villaverde

(2010) for reviews of related literature. This paper considers issues related to identi�cation, in-

ference and computation from a spectral domain perspective. The goal is to present a uni�ed

framework for identifying and estimating linearized DSGE models based on the mean and the

spectrum of the underlying process.

The identi�cation of DSGE models is important for both calibration and formal statistical

analysis, although the relevant literature is relatively sparse. Substantial progress has been made

recently, notably by Iskrev (2010) and Komunjer and Ng (2011), and by Canova and Sala (2009),

Consolo, Favero and Paccagnini (2009) and Fukac, Waggoner and Zha (2007). Komunjer and Ng

(2011) documented that an inherent di¢ culty in the identi�cation analysis is that the reduced

form parameters (i.e., the ones appearing directly in the solution of the model) are in general not

identi�able, thus the traditional approach of identifying structural parameters from the reduced

form breaks down. Also, the solution system of a DSGE model can be singular (i.e., when the

number of observed endogenous variables is greater than the number of exogenous shocks), which

constitutes an additional layer of conceptual di¢ culty. They provided necessary and su¢ cient

conditions for the local identi�cation of the dynamic parameters by exploiting the dynamic structure

of the model. Our identi�cation analysis is distinctly di¤erent from theirs and other related work

in the literature. Speci�cally, we work in the frequency domain, treating the spectral density as

an in�nite dimensional mapping, and delivering simple identi�cation conditions applicable to both

singular and nonsingular DSGE systems without relying on a particular (say, the minimal state)

representation.

We �rst focus on the identi�cation of the dynamic parameters from the spectrum. We treat

the elements of the spectral density matrix as mappings from the structural parameter space to

complex valued functions de�ned over [��; �] in a Banach space. Then, the parameters are locally
identi�ed if and only if the overall mapping is locally injective (that is, if any local change in pa-

rameter values leads to a di¤erent image). This leads to a necessary and su¢ cient rank condition

for local identi�cation, which depends on the �rst order derivative of the spectral density matrix

with respect to the structural parameters of interest. Depending on the model at hand, the re-

sulting condition can be easily evaluated analytically or numerically. The result is general because

the assumptions mainly involve the uniqueness of the DSGE solution (i.e., determinacy) and the
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continuity and smoothness of the spectral density matrix. Note that although the identi�cation

condition is formulated in the spectral domain, it has a time domain interpretation as well. Specif-

ically, under some regularity condition that ensures a one-to-one mapping between the spectral

density matrix and the autocovariance functions, the condition is also necessary and su¢ cient for

local identi�cation through the complete set of autocovariances. Next, we incorporate the steady

state parameters into the analysis and study identi�cation through both the �rst and second order

properties of the process. The result we obtain is analogous to the previous case with the addition

of an extra term depending on the steady state parameters. When interpreted in the time domain,

this condition is necessary and su¢ cient for local identi�cation through the mean and the complete

set of autocovariances.

We discuss various extensions of these two identi�cation results. (1) We study identi�cation

through a subset of frequencies. This is relevant for situations where it is desirable to construct

estimators based on a subset of frequencies to minimize the e¤ect of unmodeled seasonality or

measurement errors. (2) We consider partial identi�cation, i.e., identifying a subset of parameters

without making identi�cation statements about the rest. (3) We give a necessary and su¢ cient

condition for conditional identi�cation, i.e., the identi�cation of a subset of parameters while holding

the values of the other parameters �xed at some known value. (4) We also study identi�cation under

general nonlinear parameter constraints. For example, this allows to constrain some monetary

shocks to have no long run e¤ect on real variables, which can be easily formulated as a set of

restrictions on the spectral density matrix at frequency zero. The second and third extensions are

motivated by Komunjer and Ng (2011), although the assumptions used there are di¤erent. The

�rst extension is new. It provides the identi�cation foundation for inference based on a subset of

frequencies studied later in the paper.

Furthermore, when lack of identi�cation is detected, our method can be used to trace out para-

meter values that yield processes with identical (�rst and) second order properties. We summarize

the path of these values via non-identi�cation curves and provide a simple algorithm to obtain

them. It appears that our paper is the �rst to deliver such curves. They can serve three purposes.

First, because they showcase which parameters are unidenti�ed and their equivalent parameter val-

ues, they are useful for building a DSGE model. Second, because they characterize the size of the

nonidenti�ed local neighborhood, they are useful for inference. In particular, if the neighborhood

is very small, then the lack of local identi�cation arguably may not be a great threat to inference

that assumes identi�cation nonetheless. Otherwise, serious thoughts should be given. Third, the

curves can be embedded into a procedure to ensure the robustness of the identi�cation analysis.

This point will be elaborated using an example in Section 3.2.
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We illustrate the proposed method using a model considered by An and Schorfheide (2007) and

document a serious concern about the identi�cation of the parameters in the Taylor rule equation.

The result shows that, when varying parameters in this equation along a certain path, the (mean

and) spectrum of the observables stay the same, thus it is impossible to uniquely pin down the

parameter values even with an in�nite sample. The values on the curve suggest that in this model

it is impossible to distinguish between a hawkish rule (a long run policy coe¢ cient of 1.57 on

in�ation and 0.00 on output, resulting in respective Taylor rule weights of 0.41 and 0.00), and a

more dovish rule (0.99 on in�ation and 1.00 on output, with Taylor rule weights of 0.20 on each).

To our knowledge, the current paper is the �rst to document such an identi�cation feature about

the Taylor rule parameters.

As will be becoming clear, our results, as well as their proofs, are closely connected to Rothen-

berg (1971), who considered identi�cation of parametric econometric models from the density func-

tions and provided rank conditions based on the information matrix. However, there exists an

important di¤erence. Namely, in our analysis, the spectral density is a complex valued matrix

that may be singular. Under singularity, the conventional information matrix does not exist. This

generates some conceptual and technical di¢ culties that do not arise in Rothenberg (1971). Con-

sequently, our condition is based on a criterion function di¤erent from the information matrix. We

further show that, when restricting to the nonsingular special case, our condition is equivalent to

evaluating the rank of the information matrix. Therefore, the condition of Rothenberg (1971) still

applies, albeit only to nonsingular models.

An identi�cation result is useful only if it corresponds to an estimator. This motivates the con-

sideration of the frequency domain quasi-maximum likelihood (FQML) estimation in this paper.

The FQML approach was �rst proposed by Whittle (1951). Its statistical properties have been stud-

ied by, among others, Dunsmuir and Hannan (1976), Dunsmuir (1979) and Hosoya and Taniguchi

(1982) in the statistics literature. In the economics literature, Hansen and Sargent (1993) derived

the FQML as an approximation to the time domain Gaussian QML and used it to understand the

e¤ect of seasonal adjustment in estimating rational expectations models. Diebold, Ohanian and

Berkowitz (1998) laid out a general framework for estimation and model diagnostics based on a full

second order comparison of the model and data dynamics. Their criterion function includes FQML

as a special case.

The contribution of the current paper in the area of FQML estimation is threefold. First,

we formally establish the link between the identi�cation result and the property of the estimator

by showing that the rank condition derived is necessary and su¢ cient for the estimator to be

asymptotically locally unique. Therefore, the identi�cation result is empirically relevant. Second,
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we derive the limiting distribution of the estimator under mild conditions. Finally, we discuss a

computationally attractive method to obtain the estimates, following the approach of Chernozhukov

and Hong (2003). Besides the computational advantage, it allows us to impose priors on the

parameters, thus having a (quasi) Bayesian interpretation. Note that the above results allow for

estimation using only a subset of frequencies.

Besides the above mentioned papers, there exists a small but growing literature that exploits

the merits of estimation and diagnosis of econometric models in the spectral domain. Engle (1974)

considered band spectrum regressions and demonstrated their value in dealing with errors in vari-

ables and seasonality. Altug (1989) applied FQML to estimate models with additive measurement

errors. Watson (1993) suggested plotting the model and data spectra as one of the most informa-

tive diagnostics. Berkowitz (2001) considered the estimation of rational expectation models based

on the spectral properties of the Euler residuals. Also, see Christiano, Eichenbaum and Marshall

(1991) and Christiano and Vigfusson (2003) for applications of FQML to various problems. We

believe that the identi�cation, estimation and computational results obtained in this paper can be

useful for the further development of the literature in this �eld and for facilitating estimation and

comparison of more sophisticated models.

The paper is organized as follows. The structure of the DSGE solution is discussed in Section 2.

Section 3 considers the local identi�cation of the structural parameters together with an algorithm

to trace out non-identi�cation curves and an illustrative example. The FQML estimator and its

asymptotic properties are studied in Section 4. The discussion on interpretation of the estimates in

misspeci�ed models is also included. Section 5 presents a quasi-Bayesian approach for computation

and inference. Section 6 concludes. All proofs are contained in the Appendix.

The following notation is used. jzj is the modulus of z; the imaginary unit is denoted by i.
X� stands for the conjugate transpose of a complex valued matrix X. For a random vector xt,

xta denotes its a-th element. For a matrix A, Aab stands for its (a; b)-th entry. If f� 2 Rk is a

di¤erentiable function of � 2 Rp, then @f�0=@�0 is a k-by-p matrix of partial derivatives evaluated
at �0. �!p�and �!d�signify convergence in probability and in distribution. And Op(�) and op(�)
are the usual symbols for stochastic orders of magnitude.

2 The model

Suppose a discrete time DSGE model has been solved and log-linearized around the steady state.

Assume the solution is unique. Let Y dt (�) be the log-deviations of endogenous variables from their

steady states with � being a �nite dimensional structural parameter vector containing the dynamic

parameters. Y dt (�) can be represented in various ways, and our method does not rely on a particular
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representation. To maintain generality, we only assume that they are representable as

Y dt (�) =
1X
j=0

hj(�)�t�j ; (1)

where hj(�) (j = 0; :::;1) are real valued matrices of constants and f�tg is a white noise process
of unobserved structural shocks. The dimensions of the relevant variables and parameters are as

follows:

Y dt (�) : nY � 1; �t : n� � 1; hj(�) : nY � n�; � : q � 1:

Let H(L; �) denote the matrix of lagged polynomials, i.e.,

H(L; �) =

1X
j=0

hj(�)L
j : (2)

Then, Y dt (�) can be written concisely as

Y dt (�) = H(L; �)�t: (3)

Remark 1 We work directly with the vector moving average representation (3) without assuming

invertibility, i.e., �t =
P1
j=0 gj(�)Y

d
t�j(�) for some gj(�). Invertibility is restrictive because it

requires nY � n�. Consequently, we allow for both nY � n� and nY < n�. Note that the system is

singular if nY > n�.

Assumption 1. f�tg satis�es E(�t) = 0; E(�t�
0
t) = �(�) with �(�) being a �nite n� � n� matrix

for all � and E(�t�0s) = 0 for all t 6= s.
P1
j=0tr(hj(�)�(�)hj(�)

0) <1:

Assumption 1, along with (1), implies that Y dt (�) is covariance stationary and has a spectral

density matrix f�(!) that can be written as

f�(!) =
1

2�
H(exp(�i!); �)�(�)H(exp(�i!); �)�; (4)

where X� denotes the conjugate transpose of a generic complex matrix X. To illustrate the �exi-

bility of the above framework, we consider the following two examples.

Example 1 Consider a linear rational expectations system as in Sims (2002) (in this example and

the next, we omit the dependence of the parameters on � to simplify notation):

�0St = �1St�1 +	Zt +��t; (5)

where St is a vector of model variables that includes the endogenous variables and the conditional

expectation terms, Zt is an exogenously evolving, possibly serially correlated, random disturbance,
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and �t is an expectational error. Models with more lags or with lagged expectations can be accom-

modated by expanding the St vector accordingly. Then, under some conditions (Sims, 2002, p. 12),

the system can be represented as

St = �1St�1 +�0Zt +�S

1X
j=1

�j�1f �ZEtZt+j ; (6)

where �0;�1;�S ;�f and �Z are functions of �0;�1, 	 and �. Assuming Zt follows a vector

linear process (for example, Zt+1 = �Zt + �t+1), we then have St = �1St�1 +B(L)�t for some lag

polynomial matrix B(L); implying St = (I ��1L)�1B(L)�t.
Let A(L) be a matrix of �nite order lag polynomials that speci�es the observables such that

Y dt = A(L)St:

Then, we have

Y dt = A(L)(I ��1L)�1B(L)�t:

Therefore, the spectral density of Y dt is given by (4) with H(L; �) = A(L)(I ��1L)�1B(L):

Remark 2 In the above example, the matrix A(L) o¤ers substantial �exibility since it allows us to

study identi�cation and estimation based on a subset of variables (equations) or a linear transfor-

mation of them. To see this, suppose St includes two endogenous variables xt and wt. Then A(L)

can be chosen such that Y dt includes only xt but not wt; or includes xt � xt�1 but not xt. Con-
sequently, it is straightforward to analyze DSGE models with latent endogenous variables, simply

by assigning zeros and ones to the entries of A(L). We will illustrate the speci�cation of A(L) in

Section 3.2 through a concrete example. Note that such analysis is permitted because we do not

impose restrictions on the relation between nY and n�.

Example 2 Another representation used in the literature by, among others, Uhlig (1999), is as

follows:

kt+1 = Pkt +Qzt

wt = Rkt + Szt

zt+1 = 	zt + �t+1;

where kt is a vector of observed endogenous (state) variables whose values are known at time t, wt

is a vector of observed endogenous (jump) variables, zt has the same de�nition as in the previous
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example, and P, Q, R, S and 	 are matrices of constants depending on the structural parameter �.

Let

Y dt =

0@ kt

wt

1A : (7)

Then, the spectral density of Y dt is given by (4) with

H(L; �) =

0@ L�1 [I � PL] 0

�R I

1A�10@ Q

S

1A [I �	L]�1 :
Again, one can study identi�cation and estimation based on a subset of equations or a linear com-

bination of them by picking an appropriate A(L) and considering Y dt = A(L)(k0t; w
0
t)
0 instead of (7),

which corresponds to

H(L; �) = A(L)

0@ L�1 [I � PL] 0

�R I

1A�10@ Q

S

1A [I �	L]�1 : (8)

As will become clear later, if estimating the dynamic parameters is the main objective, then

it is not necessary to specify the steady states of the DSGE solution. However, in some cases one

may be interested in estimating the dynamic and steady state parameters jointly, for example, for

conducting welfare analyses. Our framework permits this. First, recall that � denotes the dynamic

parameter vector. Importantly, parameters a¤ecting both the steady states and log-deviations are

treated as dynamic and thus included in �. Next, let � denote the parameters that a¤ect only the

steady states, which is possibly a null set in some DSGE models. Finally, de�ne the augmented

parameter vector
�� = (�0; �0)0

and assume that the observables (Yt) are related to the log-deviations (Y dt (�)) and the steady states

(�(��)) via

Yt = �(��) + Y dt (�):

The above expression acknowledges that in DSGE models the constant term � typically depends

on both � and �. In the remainder of the paper, we will examine the identi�cation and estimation

of � based on the properties of f�(!) alone, and of �� based jointly on �(��) and f�(!).

3 Local identi�cation of structural parameters

We �rst consider the identi�cation of � at some �0 and subsequently of �� at some ��0. The next

assumption imposes some restrictions on the parameter space.
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Assumption 2. � 2 � � Rq and �� 2 �� � Rp+q with � and �� being compact and convex. Assume
�0 and ��0 are interior points of � and �� respectively.

Note that for identi�cation analysis alone, we do not require the compactness and convexity

assumptions on � and ��. However, they are needed for studying the asymptotic properties of the

parameter estimates.

The concept for location identi�cation is de�ned in the same way as in Rothenberg (1971, c.f.

his De�nition 3).

De�nition 1 The dynamic parameter vector � is said to be locally identi�able from the second order

properties of fYtg at a point �0 if there exists an open neighborhood of �0 in which f�1(!) = f�0(!)

for all ! 2 [��; �] implies �0 = �1.

The above concept is formulated in the frequency domain. However, there is an equivalent

formulation in the time domain in terms of autocovariance functions. Speci�cally, suppose fYtg
satisfy Assumption 1 with autocovariance function �(k) (k = 0;�1; :::) satisfying �(k) = �(�k)
and that f�(!) is continuous in !. Then, Theorem 100 in Hannan (1970, p.46) implies that there is

a one-to-one mapping between �(k) (k = 0;�1; :::) and f�(!) (! 2 [��; �]) given by

�(k) =

Z �

��
exp(ik!)f�(!)d!.

Therefore, � is locally identi�able from f�(!) if and only if it is locally identi�able from the complete

set of autocovariances f�(k)g1k=�1 of Yt.

The spectral density matrix has n2Y elements. Each element can be viewed as a map from �

to complex valued functions de�ned over [��; �] in a Banach space. Therefore, the parameters
are locally identi�ed at �0 if and only if the overall mapping is locally injective (i.e., any local

change in parameter values will lead to a di¤erent image for some element). The mappings are

in�nite dimensional and di¢ cult to analyze directly. However, it turns out the identi�cation can

be characterized by a �nite dimensional matrix. To state this precisely, we start with the following

assumption.

Assumption 3. The elements of f�(!) are continuous in ! and continuous and di¤erentiable in

�. The elements of the derivatives @ vec(f�(!))=@�0 are continuous in � and !. Let

G(�) =

Z �

��

�
@ vec(f�(!)

0)

@�0

�0�@ vec(f�(!))
@�0

�
d! (9)

Assume there exists an open neighborhood of �0 in which G(�) has a constant rank.
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This �rst part of the assumption requires the spectral density to be smooth with continuous

�rst order derivatives. The second part requires �0 to be a regular point of the matrix G(�): These

assumptions are quite mild. Note that in the de�nition of G(�), "0" denote simple transposes rather
than conjugate transposes. Alternatively, we can also write G(�) asZ �

��

�
@ vec(f�(!))

@�0

���@ vec(f�(!))
@�0

�
d!;

where "�" now denotes the conjugate transpose.

Remark 3 The dimension of G(�) is always q�q and independent of nY or n�. Its (j,k)-th element
is given by

Gjk(�) =

Z �

��
tr

�
@f�(!)

@�j

@f�(!)

@�k

�
d!:

We use this representation to compute G(�) in the application in Section 3.2. Lemma A.1 in the

Appendix provides another representation, showing explicitly that the integrand of G(�), therefore

G(�) itself, is real, symmetric and positive semide�nite. This feature is useful for proving the

subsequent theoretical results.

Theorem 1 Let Assumptions 1-3 hold. Then, � is locally identi�able from the second order prop-

erties of fYtg at a point �0 if and only if G(�0) is nonsingular.

The main computational work in obtaining G(�0) is to evaluate the �rst order derivatives and

to compute the integral. This is typically straightforward using numerical methods. First, divide

the interval [��; �] into N sub intervals to obtain (N + 1) frequency indices. Let !s denote the

s-th frequency in the partition. Then, @f�0(!s)=@�j can be computed numerically using a simple

two-point method:
f�0+ejhj (!s)� f�0(!s)

hj
(j = 1; :::; N + 1);

where ej is a q � 1 unit vector with the j-th element equal to 1, hj is a step size that can be
parameter dependent. In practice, to obtain the right hand side quantity, we only need to solve

the DSGE model twice, once using � = �0 and once with � = �0 + ejhj . After this is repeated for

all parameters in �, we can compute Gjk(�0) using

2�

N + 1

N+1X
s=1

tr

�
@f�(!s)

@�j

@f�(!s)

@�k

�
:

Note that no simulation is needed in this process. For the model considered in Section 3.2 (An and

Schorfheide, 2007) the computation takes less than a minute to �nish with N = 9999.
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Because G(�) is real, symmetric and positive semide�nite, its eigen decomposition always exists.

Therefore, the rank of G(�0) can be evaluated using an algorithm for eigenvalue decomposition and

counting the number of nonzero eigenvalues.

Theorem 1 is closely related to Theorem 1 in Rothenberg (1971), who considered identi�cation

in parametric models. In his case, f�(!) is replaced by the parametric density function and G(�)

is simply the information matrix. Since the information matrix describes the local curvature of

the log-likelihood as a function of �, its rank naturally provides a measure for identi�cation, for

lack of identi�cation is simply the lack of su¢ cient information to distinguish between alternative

structures. In our case, the result is equally intuitive, since the parameters are locally identi�ed

if and only if any deviation of the parameters from �0 leads to di¤erent mappings for f�(!). We

now state a result that formally establishes the link with Rothenberg�s (1971) condition. Note that

under Gaussianity the information matrix is given by1

I(�0) =
1

4�

Z �

��

@vec(f�0(!)
0)0

@�

�
f�1�0 (!)

0 
 f�1�0 (!)
� @vec (f�0(!))

@�0
d!;

which is de�ned only if the system is nonsingular. We restrict our attention to such a situation.

Corollary 1 Let Assumptions 1-3 hold. In addition, assume f�0(!) has full rank for all ! 2
[��; �]: Then, G(�0) and I(�0) have the same rank. Also, for any c 2 Rq, G(�0)c = 0 if and only
if I(�0)c = 0:

Therefore, Rothenberg�s (1971) condition applies to DSGE models, albeit only to nonsingular

systems. Because G(�0) and I(�0) share the same null space, they deliver the same information

about non-identi�cation. The issue of non-identi�cation will be further addressed in Section 3.1.

Given the insight conveyed by Theorem 1, it becomes straightforward to study the identi�cation

of �� based on both the �rst and second order properties of the process.

De�nition 2 The parameter vector �� is said to be locally identi�able from the �rst and second order

properties of fYtg at a point ��0 if there exists an open neighborhood of ��0 in which �(��1) = �(��0)

and f�1(!) = f�0(!) for all ! 2 [��; �] implies ��0 = ��1.

Assumption 4. The elements of �(��) are continuously di¤erentiable with respect to ��. Let

�G(��) =

Z �

��

�
@ vec(f�(!)

0)

@��
0

�0�@ vec(f�(!))
@��
0

�
d! +

@�(��)0

@��

@�(��)

@��
0 :

Assume there exists an open neighborhood of ��0 in which �G(�) has a constant rank.

1Under Gaussianity, I(�0)�1 is the asymptotic covariance matrix of the FQML estimator based on the full spec-
trum, c.f. Section 4, in particular Theorem 3 and the expression (18) that follows.
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Remark 4 �G(��) is a (p+ q)-by-(p+ q) matrix. The �rst term is a bordered matrix, consisting of

G(�) with p rows and columns of zeros appended to it. Both terms are positive semide�nite, hence

taking the sum cannot decrease the rank. Also, note that the (j,k)-th element of �G(��) is given by

�Gjk(��) =

Z �

��
tr
�
@f�(!)

@��j

@f�(!)

@��k

�
d! +

@�(��)0

@��j

@�(��)

@��k
:

Theorem 2 Let Assumptions 1-4 hold. Then, �� is locally identi�able from the �rst and second

order properties of fYtg at a point ��0 if and only if �G(��0) is nonsingular.

Theorems 1 and 2 can be further extended in various directions. In what follows we discuss

four such extensions.

DSGE models are often designed to explain business cycle movements, not very long run or very

short run �uctuations. At the latter frequencies, such models can be severely misspeci�ed. It is

therefore important to consider estimation and inference based on business cycle frequencies only.

Such consideration may also arise due to concerns about unmodeled seasonality or measurement

errors, see Hansen and Sargent (1993), Diebold, Ohanian and Berkowitz (1998) and Berkowitz

(2001). We now present a result that lays the identi�cation foundation for such an analysis. Let

W (!) denote an indicator function de�ned on [��; �] that is symmetric around zero and equal to
one over a �nite number of closed intervals. Extend the de�nition of W (!) to ! 2 [�; 2�] by using
W (!) =W (2� � !).2 De�ne the following two matrices

GW (�) =

�Z �

��
W (!)

�
@ vec(f�(!)

0)

@�0

�0�@ vec(f�(!))
@�0

�
d!

�
;

�GW (��) =

�Z �

��
W (!)

�
@ vec(f�(!)

0)

@��
0

�0�@ vec(f�(!))
@��
0

�
d!

�
+
@�(��)0

@��

@�(��)

@��
0

Corollary 2 (Identi�cation from a subset of frequencies)

1. Let Assumptions 1-3 hold, but with G(�) replaced by GW (�): Then, � is locally identi�able

from the second order properties of fYtg through the frequencies speci�ed by W (!) at a point
�0 if and only if GW (�0) is nonsingular.

2. Let Assumptions 1-4 hold, but with �G(��) replaced by �GW (��): Then, �� is locally identi�able

from the �rst and second order properties of fYtg through the frequencies speci�ed by W (!)
at a point ��0 if and only if �GW (��0) is nonsingular.

2This extension is needed for FQML estimation since the objective function involves summation over !j =
2�=T; :::; 2�(T � 1)=T , see (15).
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The proof is the same as for Theorems 1 and 2 because W (!) is a non-negative real valued

function, therefore it is omitted. Note that because the quantities�
@ vec(f�(!)

0)

@�0

�0�@ vec(f�(!))
@�0

�
are positive semide�nite for any ! 2 [��; �] ; the di¤erence G(�0) � GW (�0) is always positive

semide�nite. This ensures that if �0 is identi�ed using a subset of frequencies, it is also identi�ed

if considering the full spectrum. The converse does not necessarily hold. The same statement can

be made about the relation between �G(��0) and �GW (��0):

The second extension concerns the identi�cation of a subset of parameters without making

identi�cation statements about the rest (partial identi�cation). Speci�cally, Let �s be a subset

of parameters from �. We say it is locally identi�ed from the second order properties of fYtg if
there exists an open neighborhood of �0 in which f�1(!) = f�0(!), for all ! 2 [��; �], implies
�s0 = �s1. Note that, as in Rothenberg (1971, footnote p.586), the de�nition does not exclude

there being two points satisfying f�1(!) = f�0(!) and having the �
s arbitrarily close in the sense

of k�s0 � �s1k = k�0 � �1k being arbitrarily small. Analogously, we can de�ne the identi�cation of
a subset of ��; say ��s; based on the �rst and second order properties. The following result is a

consequence of Theorem 8 in Rothenberg (1971), which can be traced back to Wald (1950) and

Fisher (1966).

Corollary 3 (Partial identi�cation)

1. Let Assumptions 1-3 hold. Then, �s is locally identi�able from the second order properties of

fYtg at a point �s0 if and only if G(�0) and

Ga(�0) =

24 G(�0)

@�s0=@�
0

35
have the same rank.

2. Let Assumptions 1-4 hold. Then, ��s is locally identi�able from the �rst and second order

properties of fYtg at a point ��s0 if and only if �G(��0) and

�Ga(��0) =

24 �G(��0)

@��
s
0=@

��
0

35
have the same rank.

12



The proof is in the Appendix. Furthermore, one may be interested in studying the identi�-

cation of a subset of parameters while keeping the values of the others �xed at �0 (conditional

identi�cation). The result for this extension is formally stated below.

Corollary 4 (Conditional Identi�cation).

1. Let Assumptions 1-3 hold. Then, a subvector of �; �s; is conditionally locally identi�able from

the second order properties of fYtg at a point �0 if and only if

G(�0)
s =

Z �

��

�
@ vec(f�0(!)

0)

@�s0

�0�@ vec(f�0(!))
@�s0

�
d!

is nonsingular.

2. Let Assumptions 1-4 hold. Then, a subvector of ��; ��s; is conditionally locally identi�able from

the �rst and second order properties of fYtg at a point ��0 if and only if

�G(��0)
s =

Z �

��

�
@ vec(f�0(!)

0)

@��
s0

�0�@ vec(f�0(!))
@��
s0

�
d! +

@�(��0)
0

@��
s

@�(��0)

@��
s0

is nonsingular.

The proof is the same as for Theorems 1 and 2 because G(�0)s and �G(��0)
s have the same

structure as G(�0) and �G(��0) but with derivatives taken with respect to a subset of parameters.

Therefore the detail is omitted. Comparison between Corollaries 3 and 4 suggests that the latter

is often practically more relevant and its result is also simpler to interpret, we therefore expect it

to be more frequently applied in practice.

Next, we consider identi�cation under general constraints on the parameters. One potential

example is that shocks to monetary variables have no long term e¤ect on real variables, which can

be formulated as a set of restrictions on the spectral density at frequency zero.

Corollary 5 (Identi�cation under general constraints)

1. Let Assumptions 1-3 hold. Suppose �0 satis�es  (�0) = 0 with  (�) a k-by-1 constraint vector

continuously di¤erentiable in �. De�ne the Jacobian matrix 	(�) with the (j,l)-th element

given by

	jl(�) = @ j(�)=@�l:

Suppose �0 is a regular point of both G(�) and 	(�): Then, � satisfying  (�) = 0 is locally

identi�ed from the second order properties of fYtg at a point �0 if and only if24 G(�0)

	(�0)

35
13



has full column rank equal to q.

2. Let Assumptions 1-4 hold and other conditions stated in part 1 of this corollary hold with �

replaced by ��. Then, �� satisfying  (��) = 0 is locally identi�ed from the �rst and second order

properties of fYtg at a point ��0 if and only if24 �G(��0)

�	(��0)

35
has rank (q + p).

Note that Corollary 5 can also be used to study conditional identi�cation, because the latter is

a special case of simple linear restrictions. However, Corollary 4 is simpler to apply, especially if

the dimension of �s is much smaller compared to that of �: Clearly, Corollaries 3-5 can be applied

in conjunction with Corollary 2 to study identi�cation through a subset of frequencies.

We now compare the above analysis with those of Iskrev (2010) and Komunjer and Ng (2011).

Iskrev (2010) suggested to identify the parameters from the mean and the �rst T autocovariances

of the observables. Because his result (Theorem 2) assumes T is �nite, the resulting conditions

are su¢ cient but not necessary. Meanwhile, the key di¤erences between our work and Komunjer

and Ng (2011) can be summarized along �ve aspects. First, the perspective is di¤erent. Komunjer

and Ng (2011) regard the solution of a DSGE model as a minimal system with miniphase. Their

condition e¤ectively exploits the implication of the latter two features for identi�cation. Instead,

we regard the spectrum of a DSGE model as an in�nite dimensional mapping. The analysis studies

its property under local perturbation of the structural parameter vector. Second, the assumption

is di¤erent. We do not require the solution system to have minimal phase. Therefore, we permit

the rank of the spectral density matrix to vary across frequencies. This is practically relevant. For

example, in Smets and Wouters (2007), the rank of the spectral density is lower at frequency zero

because the �rst di¤erences of stationary variables are considered. Third, the system representation

requirement is di¤erent. Komunjer and Ng (2011) require a minimal state representation, while we

do not. Whatever is the state representation under which the model is solved (St in the GENSYS

algorithm, for example), the spectral density can be computed and that is all that is needed. Fourth,

the treatment of stochastic singularity is di¤erent. Komunjer and Ng (2011) give separate results

for singular and nonsingular systems, while our single condition applies to both. Intuitively, this

follows because the dimension of our criterion function is independent of those of the observation

vector and the vector of innovations, but only depends on that of the structural parameter vector.

Finally, the computation is di¤erent. Although both methods require numerical di¤erentiation, it is
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applied to di¤erent objects. In Komunjer and Ng (2011), it is applied to the coe¢ cient matrices in

the state space representation, while in our case we compute the derivative of the spectral density

with respect to the structural parameter vector.

3.1 Tracing out non-identi�cation curves

In this section the discussion will focus on � because for �� the procedure works in the same way.

Suppose Theorem 1 or Corollary 2 shows that � is locally unidenti�able.

First, consider the simple case where G(�0) has only one zero eigenvalue. Let c(�0) be a

corresponding real eigenvector satisfying kc(�0)k = 1. Then, c(�0) is unique up to multiplication

by �1; and thus can be made unique by restricting its �rst nonzero element to be positive. This
restriction is imposed in the subsequent analysis. Let �(�0) be an open neighborhood of �0. Under

Assumptions 1 to 3, G(�) is continuous and has only one zero eigenvalue in �(�0); while c(�) is

continuous in �(�0). As in Rothenberg (1971), de�ne a curve � using the function �(v) which solves

the di¤erential equation

@�(v)

@v
= c(�),

�(0) = �0;

where v is a scalar that varies in a neighborhood of 0 such that �(v) 2�(�0). Then, along �, � is
not identi�ed at �0 because

@vec
�
f�(v)(!)

�
@v

=
@vec

�
f�(v)(!)

�
@�(v)0

c(�) = 0 (10)

for all ! 2 [��; �]; where the last equality uses Assumption 3 and the fact that c(�) is the eigenvector
corresponding to the zero eigenvalue (c.f. (A.3) in the Appendix). We call � the non-identi�cation

curve.

Clearly, this curve is continuous in v. It is also locally unique, in the sense that there does not

exist another continuous curve containing �0 and satisfying f�1(!) = f�0(!) for all ! 2 [��; �]. We
state this result as a Corollary:

Corollary 6 Let Assumptions 1-3 hold and rank(G(�0)) = q � 1. Then, in a small neighborhood
of �0, there exists precisely one curve passing through �0 that satis�es f�1(!) = f�0(!) for all

! 2 [��; �]:

Corollary 6 is not a trivial result because it involves in�nite dimensional maps. The key idea

in the proof is to reduce the problem to a �nite dimensional one by considering projections of f�(:)
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associated with �nite partitions of [��; �]. Then, a standard constant rank theorem can be applied.
The details of the proof are in the Appendix.

The non-identi�cation curve can be evaluated numerically in various ways. The simplest exam-

ple is the Euler method. First, obtain c(�0) as described above. Then, compute recursively

�(vj+1) � �(vj) + c(�(vj))(vj+1 � vj); vj+1 � vj � 0; j = 0; 1; ::: (11)

�(vj�1) � �(vj) + c(�(vj))(vj�1 � vj); vj�1 � vj � 0; j = 0;�1; :::

where jvj+1 � vj j is the step size, which can be set to some small constant, say h. The associated
approximation error in each step is of order O(h2) if �(v) has bounded �rst and second derivatives.

Therefore, the cumulative error over a �nite interval is O(h). It is important to note that because

�(�0) is usually unknown, so is the domain of the curve. However, this is not a problem in practice,

because we can �rst obtain a curve over a wide support, then resolve the model and compute the

spectral density using points on this curve. The curve can then be truncated to exclude the points

that violate determinacy, the natural bounds of the parameters (e.g., the discount rate, stationary

autoregressive coe¢ cients), and those yielding f�(!) di¤erent from f�0(!).

Next, consider the case where G(�0) has multiple zero eigenvalues. Then, in general, there exists

an in�nite number of curves satisfying (10), because any linear combination of the eigenvectors

points to a direction of non-identi�cation. It is not useful to try reporting all such curves. To see

this, suppose �0 = (�10; �
2
0)
0 and that changing �1 along a certain curve �1 while keeping �2 �xed at

�20 yields identical spectral densities. Also suppose the same property holds when we vary �
2 and

�x �1 at �10; yielding a curve �2. Suppose the rank of G(�) stays constant in a local neighborhood of

�0. Then, changing �1 and �2 simultaneously can also generate new curves and there are in�nitely

many of them. In this example, �1 and �2 contain essentially all the information, as the rest

of the curves are derived from them, and thus it su¢ ces to report only two of them. Motivated

by the above observation, we propose a simple four-step procedure that delivers a �nite number

of non-identi�cation curves. The key idea underlying this procedure is to distinguish between

separate sources of non-identi�cation by using Corollary 4. More speci�cally, we apply the rank

condition recursively to subsets of parameters to �nd the ones that are not identi�ed and depict

their observationally equivalent values using curves.

� Step 1. Apply Theorem 1 to verify whether all the parameters in the model are locally

identi�ed. Proceed to Step 2 if lack of identi�cation is detected.

� Step 2. Apply Corollary 4 to each individual parameter. If a zero eigenvalue of G(�)s

evaluated at �0 is found, then it implies that the corresponding parameter is not locally
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conditionally identi�ed. Apply the procedure outlined above to obtain a non-identi�cation

curve (changing only this element and �xing the value of the others at �0). Repeating this

for all individual parameters, we obtain a �nite number of curves, with each curve being a

scalar valued function of v:

� Step 3. Increase the number of parameters in the considered subsets of �0 by one at a time.
Single out the subsets with the following two properties: (1) it does not include the subset

detected in previous steps as a proper subset, and (2) when applying Corollary 4, it reports

only one zero eigenvalue. Repeat the procedure outlined above for all such subsets to obtain

non-identi�cation curves. Note that if the subset has k elements, then the associated curve

is a k-by-1 vector valued function of v:

� Step 4. Continue Step 3 until all subsets are considered. Solve the model using parameter
values from the curves to determine the appropriate domain for v. Truncate the curves

obtained in Steps 1 to 4 accordingly.

Step 2 returns non-identi�cation curves resulting from changing only one element in the para-

meter vector. In Step 3, the number of elements is increased sequentially. For each iteration, the

algorithm �rst singles out parameter subvectors whose elements are not separately identi�ed. Then,

only subvectors satisfying the two properties outlined in Step 3 are further considered. The �rst

property is to rule out redundancy, because, if a k-element subset constitutes a non-identi�cation

curve, including any additional element (�xing its value or varying it if it itself is not conditionally

identi�able) will by de�nition constitute another such curve, but conveying no additional infor-

mation. The second property serves the same purpose. Because if some subvector yields a G(�)s

with multiple zero eigenvalues, then it must be a union of subvectors identi�ed in previous steps

and containing fewer elements. To see that this is necessarily the case, suppose that for a given

subvector, two zero eigenvalues are reported. Then, there exists a linear combination of the two

corresponding eigenvectors that makes the �rst element of the resulting vector zero. Similarly,

there is a combination that makes the second element zero. The two resulting vectors are valid

eigenvectors, however, they correspond to lower dimensional subvectors of �. Now, apply Corollary

4 to these two subvectors. If single zero eigenvalues are reported, then it implies that they have

already been considered in the previous steps. Otherwise, the dimension of the subvectors can be

further reduced by using the same argument, eventually leading to the conclusion that they have

been previously considered. The general case with more than two zero eigenvalues can be analyzed

similarly.

In Steps 3 and 4, we do not remove any parameter from � after non-identi�cation curves are
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found. Otherwise, we may fail to detect some curves. To see this, suppose � 2 R4 and that the
subvectors (�1; �2) and (�1; �3; �4) form two non-identi�cation curves. If we removed �1 and �2

from � after considering two-parameter subsets, then we would miss (�1; �3; �4). Finally, in Step 4,

the truncation narrows down the domain of the non-identi�cation curve, which can be used to, for

example, exclude parameter values incompatible with the economic theory. This is computationally

simple to implement in practice because the domain of any curve is always one dimensional. For

illustration, consider the curve (�1(v); �2(v)) and suppose that the economic theory requires the

value of �1 to be non-negative. Then, we simply chop o¤ those v with �1(v) � 0. If the theory
also imposes restriction on �2, then we simply drop those v over which at least one restriction is

violated.

This procedure will deliver a �nite number of curves with the following two features. First, the

curves are minimal in the sense that, for each curve, all elements in the corresponding subvector

have to change to generate non-identi�cation. Fixing the value of any element will shrink the

corresponding curve to a single point. Second, the curves are su¢ cient in the sense that, for any

subvector that can generate a non-identi�cation curve passing through �0, it or one of its subsets

are already included. Finally, the procedure is simple to implement because it mainly involves

repeated applications of Corollary 4. This simplicity is achieved because we start with the lowest

dimension, thus there is no need to directly handle the situation with multiple zero eigenvalues.

It should also be noted that, apart from evaluating the non-identi�cation curves, the procedure is

not computationally demanding. Once G(�) is computed in Step 1, the G(�)s for any subvector

considered can be obtained by simply picking out relevant elements of G(�) (c.f. Remark 3).

Speci�cally, suppose we are interested in a particular k-element subvector of �. If we number

parameters inside �, and let � be a set of parameter numbers of interest (i.e., if we want to vary

only parameters 1,2, and 5, then � = f1; 2; 5g), then the (i; j)-th element of G(�)s is given by

G(�)si;j = G(�)�i;�j ; i = 1; 2; :::; k; j = 1; 2; :::; k: (12)

Also note that in case of Theorem 2, the same logic applies to the term
�
@�(��0)

0=@��
s� h

@�(��0)=@��
s0
i
,

i.e., having computed it once, one can repeatedly apply Corollary 4 by selecting relevant elements

from it and G(�)s in the same fashion as in (12).

3.2 An illustrative example

To provide a frame of reference, we consider a DSGE model from An and Schorfheide (2007) whose

identi�cation is also studied by Komunjer and Ng (2011). We consider identi�cation based on the

(�rst and) second order properties and also obtain non-identi�cation curves.
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The log-linearized solutions are given by:

yt = Etyt+1 + gt � Etgt+1 �
1

�
(rt � Et�t+1 � Etzt+1)

�t = �Et�t+1 +
�(1� �)
��2�

(yt � gt)

ct = yt � gt

rt = �rrt�1 + (1� �r) 1�t + (1� �r) 2(yt � gt) + ert

gt = �ggt�1 + �gt

zt = �zzt�1 + �zt

where ert = �rt, �rt �WN(0; �2r), �gt �WN(0; �2g), and �zt �WN(0; �2z) are mutually uncorrelated

shocks, � is the steady state in�ation rate. The vector of parameters to be identi�ed is

� = (� ; �; �; �; �2;  1;  2; �r; �g; �z; �
2
r ; �

2
g; �

2
z):

We use parameter values

�0 = (2; 0:9975; 0:1; 53:6797; 1:008
2; 1:5; 0:125; 0:75; 0:95; 0:9; 0:4; 3:6; 0:9); 3

as given in Table 3 of An and Schorfheide (2007).

We �rst describe how to compute the spectrum for a given parameter vector. We can write the

model as in (5) with

St = (zt; gt; rt; yt; �t; ct; Et(�t+1); Et(yt+1))
0: (13)

The exact formulations of the matrices �0;�1;	 and � are omitted here4. We use the GENSYS

algorithm provided by Sims (2002) to obtain the model solution numerically in the form of (6),

speci�cally

St = �1St�1 +�0�t;

where �1 and �0 are functions of �. The spectral density, as noted before, can then be computed

using (4) with

H(L; �) = A(L)(I ��1L)�1�0:
3Note that we scale the values for the variances (�2r; �

2
g; �

2
z) from An and Schorfheide (2007) by 105. This scaling

is merely for ensuring numerical stability and does not a¤ect any of our conclusions.
4Please refer to the MATLAB code available from the authors�web pages for details.
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Given the St in (13) and Y dt = (rt�1;yt; �t; ct)
0, the matrix A(L) is given by50BBBBBB@

0 0 L 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

1CCCCCCA :

It should be noted that the results in this example do not rely on using the solution algorithm of

Sims (2002). Other algorithms considered in the literature, e.g. that in Uhlig (1999), can be used

to obtain the same conclusions. The algorithm will produce the P,Q,R,S representation as in (7),

with kt+1 = rt; wt = (yt; �t; ct)
0; zt = (ert; gt; zt)0. The spectrum can then be computed as in (8).

3.2.1 Analysis based on the second order properties

To compute G(�0), the integral in G(�0) is approximated numerically by averaging over 10,000

Fourier frequencies from �4999�=5000 to 4999�=5000 and multiplying by 2�. The results reported
are robust to varying the number of frequencies between 5,000 and 10,000. The step size for the

numerical di¤erentiation6 is set to 10�7 � �0. The rank of G(�0) is computed as the number of
nonzero eigenvalues, using the MATLAB default tolerance set at tol = size(G)eps(kGk), where eps
is the �oating point precision of G. We obtain rank(G(�0)) = 10. Because q = 13, this means that

the entire parameter vector cannot be identi�ed from the spectrum. In addition, this suggests that

three parameters have to be �xed to achieve identi�cation.

Since the model is not identi�ed, we can follow the procedure outlined in Section 3.1 to pinpoint

the sources of non-identi�cation. In Step 2, we apply Corollary 4 to all one-element subsets of �

which, as noted above in (12), simply amounts to checking whether any diagonal elements of G(�0)

are zero. None are found, hence we continue to Step 3 and consider all two-element subvectors of

�. We �nd three subvectors that yield Gs(�0) with one zero eigenvalue: (�; �) , (�; �2) and (�; �2).

This �nding is very intuitive, since all of these parameters enter the slope of the Phillips curve

equation and thus are not separately identi�able, as noted by An and Schorfheide (2007). We do

not report the non-identi�cation curves for these cases, as they are trivial and can be eliminated

by reparameterizing the model with � � �(1 � �)=
�
��2�

�
as a new parameter instead. However,

highlighting them does play a useful part in illustrating our procedure at work.

Before we continue, we exclude all three-parameter subvectors that contain either of the three

non-identi�cation sets identi�ed above as proper subsets. Considering all remaining three-element
5Considering rt instead of rt�1 in Y d

t yields the same result. We only need to replace the lag operator in the �rst
row of A(L) by 1. Such a feature is true in general.

6A simple two-point method is used. In our experience, using higher-order methods did not change the conclusions.
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subvectors of � yields no new non-identi�cation sets. However, there is one four-element subvector

which has one zero eigenvalue:

( 1;  2; �r; �
2
r):

Interestingly, all of these parameters enter the Taylor rule equation in the model.

Having excluded all subvectors containing the non-identi�cation parameter sets above and re-

peating Step 4 with more parameters, we do not �nd any more sources of non-identi�cation in this

model. The result implies that to achieve identi�cation, it is necessary and su¢ cient to �x two

parameters out of �; � and �2 , and one parameter out of  1;  2; �r and �
2
r :

The above �nding is further con�rmed when we repeat the exercise by considering a reparame-

terization of the model with � as de�ned above: � is still not identi�ed, and G(�0) has only one zero

eigenvalue. Note that the reparameterization amounts to �xing two parameters out of �; � and �2.

This leaves only one direction of non-identi�cation, which turns out to be, not surprisingly, along

the ( 1;  2; �r; �
2
r) subvector:

We then proceed to evaluate the non-identi�cation curve, consisting of combinations of  1;  2; �r;

and �2r , using the Euler method with step size h = 10
�5 in a small neighborhood around �0. The

result is presented in Figure 1. The �gure shows the non-identi�cation curve pertaining to each

parameter. The initial value is at �0, and the curve is extended in each direction using (11),

which are marked on the graph by bold and dotted lines respectively. It should be noted that

 2, which governs the output weight in the Taylor rule and must be non-negative, is decreasing

along Direction 1. Therefore, we truncate the curve at the closest point to zero where  2 is still

positive. Along Direction 2, we reach an indeterminacy region before any natural bounds on para-

meter values are violated, and hence truncate the curve at the last point that yields a determinate

solution. Therefore, this case also provides an illustration of how to narrow down the domain of

the non-identi�cation curve in practice.

(Figure 1 here)

To give a quantitative idea of the parameter values on the curve, we also present a sample of

values from various points on the curve in Table 1. Speci�cally, ten points were taken at regularly

spaced intervals from �0 in the positive and negative direction.

(Table 1 here)

Of course it is necessary to verify that the points on the curve result in identical spectral densi-

ties. We do this by computing the f�(!) at half of the Fourier frequencies used in the computation

21



of G(�0) (i.e., 5000 frequencies between 0 and �)7 for each point on the curve and then compare it

to the ones computed at �0. Due to numerical error involved in solving the model, the computation

of the G matrix and the approximation method for the di¤erential equation, small discrepancies

between the spectra computed at �0 and the points on the curve should be expected. We therefore

consider three di¤erent measures of the discrepancies (let f�hl(!) denote the (h; l)-th element of

the spectral density matrix with parameter � and 
 be the set that includes the 5000 frequencies

between 0 and �):

Maximum absolute deviation: max
!j2


j f�hl(!j)� f�0hl(!j)j

Maximum absolute deviation in relative form :
max!j2
 j f�hl(!j)� f�0hl(!j)j

j f�0hl(!j)j

Maximum relative deviation: max
!j2


j f�hl(!j)� f�0hl(!j)j
j f�0hl(!j)j

:

Note that when computing the second measure, the denominator is evaluated at the same frequency

that maximizes the numerator. To save space, we only report results for the points in Table 1 as

the rest are very similar. Both Tables 2 and 3 show that even the largest observed deviations are

quite modest (recall that the Euler method involves a cumulative approximation error that is of the

same order as the step size, in this case 10�5). This con�rms that the spectral density is constant

along the curve.

(Tables 2 and 3 here)

Note that all four parameters in ( 1;  2; �r; �
2
r) have to change simultaneously to generate non-

identi�cation. This can be further veri�ed as follows. Suppose �xing �2r still leaves ( 1;  2; �r)

unidenti�ed. Then, this subvector should generate a non-identi�cation curve. However, using

the procedure outlined above yields a curve the points on which produce much larger deviations

from f�0(!) than those reported in Tables 2 and 3. Speci�cally, maximum relative and absolute

deviations in both directions are of order 10�4 at the very �rst point away from �0, which is already

higher than the implied approximation error, reach order 10�2 for most elements of the spectrum

in under 4000 steps away from �0, and keep growing fast as the curve is extended further. We also

experimented with other three-parameter subsets of ( 1;  2; �r; �
2
r) and reached similar �ndings.

These �ndings provide further support for our result.

7There is no need to consider ! 2 [��; 0] because f�(!) equals to the conjugate of f�(�!):
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3.2.2 Analysis based on the �rst and second order properties

We now extend the analysis to incorporate the steady state parameters. Consider the measurement

equations from An and Schorfheide (2007) relating the output growth, in�ation, and the interest

rate observed quarterly to the steady states and elements of St:

Y GRt = 
(Q) + 100(yt � yt�1 + zt)

INFLt = �(A) + 400�t

INTt = �(A) + r(A) + 4
(Q) + 400rt

where


(Q) = 100(
 � 1); �(A) = 400(� � 1); r(A) = 400( 1
�
� 1)

and 
 is a constant in the technological shock equation. The parameter vector becomes

� = (� ; �; �; �; �;  1;  2; �r; �g; �z; �
2
r ; �

2
g; �

2
z; 


(Q))

where 
(Q) is the only non-dynamic parameter. Thus, we have

�(�) =

0BBB@

(Q)

400(� � 1)

400(� � 1) + 400( 1� � 1) + 4

(Q)

1CCCA
and the A(L) matrix in this case is0BBB@

100 0 0 100� 100L 0 0 0 0

0 0 0 0 400 0 0 0

0 0 400 0 0 0 0 0

1CCCA :

Setting 
(Q) = 0:55 as in An and Schorfheide (2007), we consider identi�cation at

�0 = (2; 0:9975; 0:1; 53:6797; 1:008; 1:5; 0:125; 0:75; 0:95; 0:9; 0:4; 3:6; 0:9; 0:55):

Note that �(�) can be easily di¤erentiated analytically in this case.

Applying Theorem 2, we �nd rank(G(�0)) = 12. Hence, �0 is not identi�able from the �rst and

second order properties of the observables either. After applying the procedure from Section 3.1,

we �nd two subvectors, (�; �) and ( 1;  2; �r; �
2
r), which account for non-identi�cation. Intuitively,

we no longer detect (�; �) and (�; �) as � enters �(�) and hence is identi�able from the mean. Since

the two non-identi�cation curves are exactly the same as in the dynamic parameter case, they are

not reported here.
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Remark 5 This example shows that in this model the Taylor rule parameters are not separately

identi�able from the (�rst and) second order properties of observables at �0. Such a �nding, �rst

documented in the current paper, is also more recently documented in Komunjer and Ng (2011).

This constitutes a serious concern for estimation in this and similar DSGE models.

Remark 6 The results also have direct implications for Bayesian inference. Suppose we impose

a tight prior on one of the four parameters, say  1, while using �at priors on the rest. Then,

the posterior distributions of  2; �r and �
2
r will most often become concentrated due to their rela-

tion with  1. Therefore, simply comparing the marginal priors and posteriors may give the false

impression that the parameters are separately (or even strongly) identi�ed and may overstate the

informativeness of the data about the parameters.

3.2.3 A procedure to ensure robustness

In the above, we have used a particular step size for numerical di¤erentiation and the default

tolerance level for deciding the ranks of G(�0) and G(�0). We now examine the sensitivity of the

results to a range of numerical di¤erentiation steps (from 10�2 to 10�9) and tolerance levels (from

10�2 to 10�10). The results are reported in Table 4. We can see that the results are robust over

a wide range of step sizes and tolerance levels. Discrepancies start to occur when the step size

is very small or very large and when the tolerance level is very stringent. This is quite intuitive,

as when the step size is too large, the numerical di¤erentiation will induce a substantial error,

since the estimation error for the two-point method is of the same order as the step size. When

the step size is too small, the numerical error from solving the model using GENSYS will be large

relative to the step size, therefore the rank will also be estimated imprecisely. Our choice of the

step size of 10�7 � �0 can therefore be seen as balancing the trade-o¤ between derivative precision
and robustness of the rank computations to tolerance levels as low as 10�10.

(Table 4 here)

Furthermore, the non-identi�cation curve can be embedded into a procedure to reduce the

reliance on the step size and tolerance level. Speci�cally, we can consider the following:

� Step 1. Compute the ranks of G(�0) and G(�0) using a wide range of step sizes and tolerance
levels (such as those in Table 4). Locate the outcomes with the smallest rank.

� Step 2. Derive the non-identi�cation curves conditioning on the smallest rank reported.

Compute the discrepancies in spectral densities using values on the curve.
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The purpose of Step 1 is to avoid falsely reporting identi�cation when the parameters are

unidenti�ed, or more generally, to overstating identi�cation. However, it may incorrectly label

identi�ed parameters as unidenti�ed, which is further addressed in Step 2. The idea is, if this

indeed occurred, then some curves reported in Step 2 will in fact correspond to parameter subsets

that are identi�able. Therefore, the discrepancy will surface as we move along such curves away

from �0 and �0. Note that applying this procedure, with step sizes and tolerance levels stated in

Table 4, will lead to the same results discussed in the above two subsections.

Remark 7 Based on the evidence reported here and our experimentation with other models, we

suggest using 10�7 � �0 (or similar magnitudes) and size(G)eps(kGk) as the default step size and
tolerance level when implementing the methods, followed by the two-step procedure outlined above

to ensure robustness.

4 FQML estimation

We �rst present a brief derivation of the FQML estimators and then study their asymptotic prop-

erties in both well and misspeci�ed models. The subsequent analysis assumes that the system is

nonsingular, i.e., nY � n�.

4.1 The estimators

For the sole purpose of deriving the quasi-likelihood function, assume that the process fYtg is
Gaussian. Let !j denote the Fourier frequencies, i.e., !j = 2�j=T (j = 1; 2; :::; T �1). The discrete
Fourier transforms are given by

wT (!j) =
1p
2�T

TX
t=1

Yt exp (�i!jt) ; j = 1; 2; :::; T � 1:

Note that replacing Yt by Yt � �(��) does not a¤ect the value of wT (!j) at these frequencies.

wT (!j) have a complex valued multivariate normal distribution, and for large T are approximately

independent, each with the probability density function (see Hannan (1970), p. 223-225)

1

�nY det(f�(!j))
exp

�
�tr

�
f�1� (!j)wT (!j)w

�
T (!j)

	�
, j = 1; 2; :::; T � 1:

Therefore, an approximate log-likelihood function of � based on observations Y1; :::; YT is given,

after multiplying by 2, by

�
T�1X
j=1

�
log det (f�(!j)) + tr

�
f�1� (!j)IT (!j)

	�
; (14)
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where IT (!j) = wT (!j)w
�
T (!j) denotes the periodogram. Letting W (!j) be an indicator function

as de�ned in the previous section, we consider the following generalized version of (14):

LT (�) = �
T�1X
j=1

W (!j)
�
log det (f�(!j)) + tr

�
f�1� (!j)IT (!j)

	�
; (15)

Then, the FQML estimator for � is given by

�̂T = argmax
�2�

LT (�) : (16)

Thus, the above procedure allows us to estimate the dynamic parameters based on the second order

properties of fYtg without any reference to the steady state parameters. Compared with the time
domain QML, the estimate here can be obtained without demeaning the data.

It is also simple to estimate both dynamic and steady state parameters jointly. Let

w��;T (0) =
1p
2�T

TX
t=1

Yt � �(��) and I��;T (0) = w��;T (0)w��;T (0)
0 :

Noticing that w��;T (0) has a multivariate normal distribution with asymptotic variance f�(0) and

is asymptotically independent of wT (!j) for j = 1; 2; :::; T � 1, we arrive at the following quantity
as twice the approximate log-likelihood function of ��

�LT
�
��
�
= LT (�)�

�
log det (f�(0)) + tr

�
f�1� (0)I��;T (0)

	�
:

Then, the FQML estimator for �� is given by

b��T = argmax
��2��

�LT
�
��
�
: (17)

4.2 Asymptotic properties of the FQML estimators

The asymptotic properties of the estimator (16), withW (!j) = 1 for all !j ; have been studied under

various data generating processes in the statistics literature, see, for example, Dunsmuir (1979) and

Hosoya and Taniguchi (1982). The estimator (17) received less attention. One exception is Hansen

and Sargent (1993), who formally established that T�1 �LT
�
��
�
converges to the same limit as twice

the time domain Gaussian quasi-maximum likelihood function for �� uniformly in �� 2 ��. Their result
allows for non-Gaussianity and model misspeci�cation. This section can be viewed as a further

development of their work in the following sense. First, we formally establish the relationship

between the identi�cation condition and the asymptotic properties of the estimator. Second, we

explicitly derive the limiting distribution of the estimator, which is important for inference and

model comparison.
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We will gradually tighten the assumptions to obtain increasingly stronger results. To analyze

the �rst issue, the following assumptions are imposed on the second and fourth order properties of

the observed process fYtg.

Assumption 5. (i) fYtg is generated by

Yt = �(��0) + Y
d
t (�0)

with Y dt (�) satisfying (1). (ii) f�(!) is positive de�nite with eigenvalues bounded away from 0

and 1 uniformly in ! for all � 2 �. The elements of @ vec(f�(!))=@�0 are bounded away from
1 uniformly in ! for all � 2 �. The elements of f�(!) belong to Lip(�) with respect to !, the
Lipschitz class of degree �; � > 1=2:

Assumption 6. �t is fourth-order stationary. Let Qh;l;g;k (j1; j2; j3) be the joint cumulant of

�th; �(t+j1)l; �(t+j2)gand �(t+j3)k. Assume
P1
j1;j2;j3=�1 jQh;l;g;k (j1; j2; j3)j <1 for any 1 � h; l; g; k �

n�:

The �rst part of Assumption 5 states that the model is correctly speci�ed. This will be relaxed

in Section 4.3. The second part strengthens the �rst condition in Assumption 3. It is satis�ed by

stationary �nite order VARMA processes with �nite error covariance matrices, which are the forms

that the solutions to linearized DSGE models typically take. In Assumption 6, the summability of

the fourth cumulant is weaker than the independence assumption, a su¢ cient condition is provided

in Andrews (1991, Lemma 1).

We now de�ne the concept of a locally unique maximizer.

De�nition 3 Let L(') be some generic criterion function. We say '0 is a locally unique maximizer

of L(') if there exists an open neighborhood of '0 such that L (') < L ('0) for all ' di¤erent from

'0 in this neighborhood.

De�ne the following quantities as the limits of T�1LT (�) and T�1 �LT
�
��
�
:

L1 (�) = � 1

2�

Z �

��
W (!)

�
log det(f�(!)) + tr

�
f�1� (!)f�0(!)

	�
d!;

�L1
�
��
�
= L1 (�)�

1

2�

�
�(��0)� �(��)

�0
f�1� (0)

�
�(��0)� �(��)

�
:

Lemma 1 Let Assumptions 1-3, 5 and 6 hold. Then,

1. T�1LT (�)!p L1 (�) uniformly over � 2 �.
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2. �0 is a locally unique maximizer of L1 (�) if and only if it is locally identi�ed. Furthermore,

if �0 is globally identi�ed,8 then it is the unique maximizer of L1 (�).

3. �̂T !p �0 if one of the following two conditions is satis�ed: 1) �0 is globally identi�ed, or 2) �0

is locally identi�ed and the maximization is carried over the corresponding small neighborhood

of identi�cation, say �(�0); instead of �.

4. Let Assumptions 1-6 hold. Then, Properties 1-3 hold when �, �0; �̂T ; LT (�) and L1 (�) are

replaced by ��; ��0;b��T ; �LT ���� and �L1 ���� ; respectively.
The �rst result is essentially due to Lemma A.3.3(1) in Hosoya and Taniguchi (1982). Their

result is pointwise in � and is established with W (!) = 1. Our result strengthens theirs to uniform

convergence, which is important for showing Property 3. The second result formally establishes

the close link between the identi�cation conditions and the asymptotic properties of the FQML

estimator. The result is quite intuitive ex post, however, it is worth documenting given that the

identi�cation property is derived without explicitly referring to the likelihood function. The �rst

two results lead directly to Property 3 by a uniform weak law of large numbers. Property 4 holds

based on the same arguments.

To derive the limiting distribution of the estimators, the assumptions on f�tg need to be further
strengthened.

Assumption 7. (i) f�tg is a vector of martingale di¤erence sequences with respect to the ���eld
generated by �s : s � t: E(�ta�tbjFt�� ) = �ab; E(�ta�tb�tcjFt�� ) = �abc; E(�ta�tb�tc�tdjFt�� ) = �abcd

a.s. with �aa > 0 and �aadd > 0 for all 1 � a; b; c; d � n�: (ii) Let c(t; r) = �t�
0
t+r � E(�t�0t+r).

Assume limT!1 T�1
PL
r=0

PT
t=1E

�
cab(t; r)

21
�
cab(t; r)

2 > "T
	�

< " holds for any " > 0; L < 1
and all 1 � a; b � n�:

Part (i) of Assumption 7 imposes restrictions on the conditional moments up to the fourth

order. �aa > 0 and �aadd > 0 are the usual positive variance conditions. It is essentially the same

as Assumption C2.3 in Dunsmuir (1979). This part can be further relaxed to allow some conditional

heteroskedasticity at the cost of some technical and notational complications, see Theorem 3.1 in

Hosoya and Taniguchi (1982). Part (ii) is a Lindeberg-type condition. It ensures that the sample

autocovariances T�1=2
PT�r
t=1 c(t; r) (r = 0; 1; :::; L) satisfy a central limit theorem for any �nite

�xed L: It can be replaced by other su¢ cient conditions that serve the same purpose. The next

result states the limiting distributions of �̂T and b��T :
8The parameter vector � is said to be globally identi�able from the second order properties of fYtg at a point �0

if for any �1 2 ��; f�1(!) = f�0(!) for all ! 2 [��; �] implies �0 = �1.

28



Theorem 3 Suppose �0 and ��0 are globally identi�ed or the maximizations (16) and (17) are over

convex compact sets in which they are locally identi�ed and are interior points.

1. Let Assumptions 1-3 and 5-7 hold. Then,

p
T (�̂T � �0)!d N(0;M�1VM�1);

where M and V are q-by-q matrices, with the (j,l)-th element given by

Mjl =

Z �

��
W (!) tr

(
f�0(!)

@f�1�0 (!)

@�j
f�0(!)

@f�1�0 (!)

@�l

)
d!

Vjl = 4�Mjl +
X

n�
a;b;c;d=1�abcd

"
1

2�

Z �

��
W (!)H�(!)

@f�1�0 (!)

@�j
H(!)dw

#
ab

�
"
1

2�

Z �

��
W (!)H�(!)

@f�1�0 (!)

@�l
H(!)dw

#
cd

;

where [:]ab denotes the (a,b)-th element of the matrix, �abcd is the fourth cross cumulant of

�ta; �tb; �tc and �td; H(!) = H(exp(�i!); �0) =
P1
j=0 hj(�0) exp(�i!j) (c.f. (3)) and H�(!)

is its conjugate transpose.

2. Let Assumptions 1-7 hold. Then,
p
T (b��T � ��0) !d N(0; �M�1 �V �M�1); where �M and �V are

(q+p)-by-(q+p) matrices, with the (j,l)-th element given by

�Mjl =

Z �

��
W (!) tr

(
f�0(!)

@f�1�0 (!)

@��j
f�0(!)

@f�1�0 (!)

@��l

)
d! + 2

@�(��0)
0

@��j
f�1�0 (0)

@�(��0)

@��l

�Vjl = 4� �Mjl +
X

n�
a;b;c;d=1�abcd

"
1

2�

Z �

��
W (!)H�(!)

@f�1�0 (!)

@��j
H(!)dw

#
ab

�
"
1

2�

Z �

��
W (!)H�(!)

@f�1�0 (!)

@��l
H(!)dw

#
cd

+Ajl +Alj

with Ajl = 2
Pn�
a;b;c=1 �abc

�R �
��W (!)

�
H�(!)

@f�1�0
(!)

@��j
H(!)

�
ab

d!

�
�
h
@�(��0)0

@��l
f�1�0 (0)H(0)

i
c
and

�abc = E(�ta�tb�tc):

When W (!) = 1, the �rst result reduces to Corollary 2.2 in Dunsmuir (1979, p. 497) and

Proposition 3.1 in Hosoya and Taniguchi (1982), which were obtained in the context of parameter

estimation in stationary vector time series models. The generalization to a more general W (!)

is new. The limiting distribution depends on the fourth order properties of the process. For

DSGE models, this is because the same set of parameters a¤ects both the conditional mean and
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the conditional covariance of the process Y dt in (1). Technically, the term h0(�) is in general not

an identity matrix, but rather depends on unknown parameters. This causes the second term in

Vjl to be in general nonzero. However, in the important special case where �t are Gaussian with

diagonal covariance matrix, �abcd = 0 and the limiting distribution depends only on the second

order property of the process. This holds for di¤erent speci�cations of W (!). Speci�cally, we have

M�1VM�1 =M�1 with

[M ]jl =
1

4�

Z �

��
W (!) tr

"
f�0(!)

@f�1�0 (!)

@�j
f�0(!)

@f�1�0 (!)

@�l

#
d!;

or in matrix notation,

M�1VM�1 =

�
1

4�

Z �

��
W (!)

@vec(f�0(!)
0)0

@�

�
f�1�0 (!)

0 
 f�1�0 (!)
� @vec (f�0(!))

@�0
d!

��1
: (18)

The second result in the theorem is new in the literature even for the case with W (!) = 1.

The inclusion of the steady state parameter makes the limiting distribution dependent on the third

order properties of Yt, namely �abc: Again, in the important special case with Gaussianity and a

diagonal covariance matrix, �abc = 0 and only the second order property matters.

To construct the con�dence interval, f�0(!), H(!) and H
�(!) (! 2 [��; �]) can be consistently

estimated by replacing �0 and ��0 with �̂T and b��T and applying (2) and (4). The derivatives and
the integrals can be evaluated numerically. The cumulants �abc and �abcd can be replaced by their

sample counterparts.

4.3 Misspeci�ed models

We consider the interpretation of the parameter estimates when the DSGE models are viewed as

approximations. The next assumption allows the true data generating process to be di¤erent from

that implied by the DSGE solution.

Assumption MI. The observations fYtgTt=1 follow a covariance stationary process given by Yt �
�0 =

P1
j=0 h0j"t�j , whose mean �0 and spectral density f0(!) are possibly di¤erent from �(��0)

and f�0(!). Also, Yt satis�es Assumptions 5(ii) with f�(!) replaced by f0(!) and Assumptions 6

and 7 with �t replaced by "t:

Suppose the estimates �̂T and b��T are constructed in the same way as before and de�ne the
following pseudo-true values

�m0 = argmax
�2�

Lm1 (�) and ��
m
0 = argmax��2��

�Lm1
�
��
�
;
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where

Lm1 (�) = � 1

2�

Z �

��
W (!)

�
log det(f�(!)) + tr

�
f�1� (!)f0(!)

	�
d!;

�Lm1
�
��
�
= Lm1 (�)�

1

2�

�
�0 � �(��)

�0
f�1� (0)

�
�0 � �(��)

�
:

Suppose �m0 and ��
m
0 lie in the interior of � and ��.

Corollary 7 Suppose �m0 and ��m0 are globally identi�ed or the maximizations (16) and (17) are

over convex compact sets in which they are locally identi�ed and are interior points. Let Assumption

MI hold.

1. Assume the DSGE solution Y dt (�) satis�es Assumptions 1-3 and 5(ii). Then,
p
T (�̂T � �m0 )!d N(0;
�1�
�1)

with


 =

Z �

��
W (!)

�
@2

@�@�0
log det(f�m0 (!)) +

@2

@�@�0
tr
n
f�1�m0

(!)f0(!)
o�

d!

�jl = 4�

Z �

��
W (!) tr

(
f0(!)

@f�1�m0
(!)

@�j
f0(!)

@f�1�m0
(!)

@�l

)
d!

+
X

n"
a;b;c;d=1�abcd

"
1

2�

Z �

��
W (!)H�

0 (!)
@f�1�m0

(!)

@�j
H0(!)dw

#
ab

�
"
1

2�

Z �

��
W (!)H�

0 (!)
@f�1�m0

(!)

@�l
H0(!)dw

#
cd

;

where �abcd is the fourth cross cumulant of "ta; "tb; "tc and "td; H0(!) =
P1
j=0 h0j exp(�i!j).

2. Assume the DSGE solution is given by �(��)+Y dt (�) and satis�es Assumptions 1-4 and 5(ii).

Then,
p
T (b��T � ��m0 )!d N(0; �
�1 ���
�1) with

�
 =

Z �

��
W (!)

�
@2

@��@��
0 log det(f�m0 (!)) +

@2

@��@��
0 tr
n
f�1�m0

(!)f0(!)
o�

d!

+2
@�(��

m
0 )

0

@��
f�1�m0

(0)
@�(��

m
0 )

@��
0

��jl = 4�

(Z �

��
W (!) tr

(
f0(!)

@f�1�m0
(!)

@��j
f0(!)

@f�1�m0
(!)

@��l

)
d! + 2

@�(��
m
0 )

0

@��j
f�1�m0

(0)
@�(��

m
0 )

@��l

)

+
X

n"
a;b;c;d=1�abcd

"
1

2�

Z �

��
W (!)H�

0 (!)
@f�1�m0

(!)

@��j
H0(!)dw

#
ab

�
"
1

2�

Z �

��
W (!)H�

0 (!)
@f�1�m0

(!)

@��l
H0(!)dw

#
cd

+Ajl +Alj
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with Ajl = 2
P n"

a;b;c;d=1�abc

�R �
��W (!)

�
H�
0 (!)

@f�1
�m0
(!)

@��j
H0(!)

�
ab

d!

�
�
h
@�(��

m
0 )

0

@��l
f�1�m0

(0)H0(0)
i
c

and �abc = E("ta"tb"tc):

Misspeci�cation in general a¤ects both the mean and the variance of the estimate. Note that

when only estimating the dynamic parameters, misspecifying �(��) has no e¤ect on the estimate �̂T .

5 Quasi-Bayesian inference

This section extends the above framework to incorporate prior distributions on the DSGE para-

meters. It also discusses a computationally attractive procedure to obtain parameter estimates.

The analysis is motivated by Chernozhukov and Hong (2003). We will focus on �0 because the

procedure is identical for ��0:

Consider the function

pT (�) =
�(�) exp

�
1
2LT (�)

�R
� �(�) exp

�
1
2LT (�)

�
d�
; (19)

where LT (�) is the same as in (15), and �(�) can be a proper prior probability density or, more

generally, a weight function that is strictly positive and continuous over �. Because exp (LT (�)) is

a more general criterion function than the likelihood, pT (�) is in general not a true posterior in the

Bayesian sense. However, it is a proper distribution density over the parameters of interest, and is

termed quasi-posterior in Chernozhukov and Hong (2003).

The estimate for �0 can be taken to be the quasi-posterior mean:

�̂T =

Z
�
�pT (�)d�:

To compute the estimator, we can use Markov chain Monte Carlo (MCMC) methods, such as the

Metropolis�Hastings algorithm, to draw a Markov chain

S =
�
�(1); �(2); :::; �(B)

�
whose marginal density is approximately given by pT (�); and �̂T can be computed as

�̂T =
1

B

BX
j=1

�(j):

Meanwhile, for a given continuously di¤erentiable function g: � ! R, for example, an impulse
response at a given horizon, its estimate can be obtained via

g(�̂T ) =
1

B

BX
j=1

g(�(j)):
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Here we omit the details on the construction of the Markov Chains, since they follow standard

procedures. One may refer to Chernozhukov and Hong (2003, Section 5) or An and Schorfheide

(2007) for more details.

The next result provides an asymptotic justi�cation for the estimator under correct model

speci�cation.

Theorem 4 Suppose �0 (��0) is globally identi�ed or �(�) (�(��)) is strictly positive only over a com-

pact convex neighborhood of �0 (��0) in which they are locally identi�ed and are interior points, then

�̂T (
b��T ) has the same limiting distribution as in Theorem 3 under the corresponding assumptions

stated there.

Consider the construction of con�dence intervals for the elements of �0 or, more generally,

of g(�0). In the important special case of Gaussianity with �(�) being diagonal, the con�dence

intervals can be obtained directly from the the quantiles of the MCMC sequence
�
�(1); �(2); :::; �(B)

�
.

Such intervals are asymptotically valid because �abcd = 0 and therefore M = V . The same result

holds for ��0 because �abc = 0; thus �M = �V . In the general case, because exp (LT (�)) is a more

general criterion function, implying M 6= V , such an interval is not necessarily asymptotically

valid, as clearly demonstrated in Chernozhukov and Hong (2003). However, valid large sample

inference can still be easily carried out using the Delta method, as suggested in Chernozhukov and

Hong (2003, Theorem 4). Speci�cally, let M̂�1 be T times the variance-covariance matrix of the

MCMC sequence
�
�(1); �(2); :::; �(B)

�
: Let V̂ be an estimator for V; which can be obtained using

the formula in Theorem 3 by replacing H(!); �abcd and @f
�1
�0
(!)=@�j (j = 1; 2; :::; q) with their

consistent estimates. Then, a valid (1� �) percent con�dence interval for g(�0) is given by

[cg;T (�=2); cg;T (1� �=2)];

where

cg;T (�) = g(�̂T ) + q�T
�1=2

s
@g(�̂T )

@�0
M̂�1V̂ M̂�1@g(�̂T )

@�

with q� being the �-quantile of the standard normal distribution. Analogous argument can be

applied to construct con�dence intervals for g(��0). The asymptotic validity of such intervals can

be veri�ed using the same argument as in Chernozhukov and Hong (2003, Theorem 4). Therefore,

the details are omitted here.

Under misspeci�cation, a result analogous to Theorem 4 can be obtained, with the true value

replaced by the pseudo-true values and the covariance matrix modi�ed accordingly.

The key computational di¤erence between the above method and the time domain quasi-

Bayesian inference is in computing the Kalman �lter versus the spectral density at the di¤erent
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parameter values. Therefore, the computation costs are similar. The spectral domain approach has

some additional advantages. First, one can exclude some frequencies by specifying an appropriate

W (!); which is not easy to achieve in the time domain. Second, if the sole interest is in estimating

the dynamic parameters, it is not necessary to specify �(��) or to demean the data. Third, although

not pursued in the current paper, the spectral domain approach can be extended to handle mod-

els without requiring log-linearizations. The idea is that as long as the spectral density can be

computed, analytically or by simulation, a criterion function similar to (14) can be constructed to

obtain parameter estimates. Such an idea has been mentioned elsewhere, for example in Diebold,

Ohanian and Berkowitz (1998), but has not been formally studied. Finally, it provides a platform

for conducting hypothesis testing and model diagnosis from the spectral domain, as emphasized by

Watson (1993). For example, one can readily obtain estimates and con�dence interval for compo-

nents of the spectral density matrix and contrast them with the observed data. Also, it is simple to

construct tests for restrictions imposed on a given frequency component, such as the zero frequency.

We plan to explore such developments in future work.

6 Conclusion

We have provided a uni�ed treatment of issues related to identi�cation, inference and computation

in linearized DSGE models in the frequency domain. Besides presenting a necessary and su¢ cient

condition for local identi�cation of the structural parameters, we also proposed a method to trace

out non-identi�cation curves when lack of identi�cation is detected. The application of our condition

is straightforward because it mainly involves computing the �rst order derivatives of the spectral

density. The MATLAB code and the results for a more complex medium size DSGE model are

available on our web page. For estimation, we considered a frequency domain quasi-maximum

likelihood (FQML) estimator and showed that it permits to incorporate relevant prior distributions

and is computationally attractive.

The current work can be further developed in several directions. First, we have assumed determi-

nacy, but we conjecture that our identi�cation condition can be applied to any selected equilibrium

path under indeterminacy, provided that the state vector and the parameter space are augmented

accordingly. Second, although we have worked with log-linearized systems, we conjecture the con-

dition can be applied to DSGE models solved with higher-order approximations, provided the

resulting spectral density and its derivatives can be computed precisely. Although the paper does

not consider weak identi�cation, it can be shown that the frequency domain perspective a¤ords a

simple and transparent inferential procedure robust to weak identi�cation (see Qu, 2011). We are

currently pursuing such research directions and hope to report results in the near future.
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Appendix
The spectral density matrix f�(!) is a Hermitian matrix satisfying f�(!)� = f�(!). It is in

general not symmetric. The following correspondence is useful for understanding and proving the
identi�cation results:

f�(!) ! f�(!)
R with f�(!)

R =

24 Re(f�(!)) Im(f�(!))

� Im(f�(!)) Re(f�(!))

35 ; (A.1)

where Re() and Im() denote the real and the imaginary part of a complex matrix, i.e., if C = A+Bi,
then Re(C) = A and Im(C) = B. Because f�(!) is Hermitian, f�(!)R is real and symmetric (see
Lemma 3.7.1(v) in Brillinger, 2001). To simplify notation, let

R(!; �) = vec(f�(!)
R):

The following lemma is crucial for proving the subsequent results.

Lemma A.1 We have the following identity:�
@ vec(f�(!)

0)

@�0

�0�@ vec(f�(!))
@�0

�
=
1

2

�
@R(!; �)

@�0

�0�@R(!; �)
@�0

�
: (A.2)

Proof of Lemma A.1. The (j; k)-th element of the term on the left hand side is equal to�
@ vec(f�(!)

0)

@�j

�0�@ vec(f�(!))
@�k

�
= tr

�
@f�(!)

@�j

@f�(!)

@�k

�
= tr

�
Re

�
@f�(!)

@�j

@f�(!)

@�k

��
=

1

2
tr

(�
@f�(!)

@�j

@f�(!)

@�k

�R)
=
1

2
tr
�
@(f�(!)

R)

@�j

@(f�(!)
R)

@�k

�

=
1

2

 
@ vec

�
f�(!)

R
�

@�j

!0(
@ vec

�
f�(!)

R
�

@�k

)
;

where the �rst equality is because of the identity vec(A0)0 vec(B) =tr(AB) for generic matrices A
and B, the second is because f�(!) is Hermitian, thus this term is real valued, the third equality
is because of the de�nition (A.1), the fourth is because, for generic complex matrices, if Z = XY ,
then ZR = XRY R (see Lemma 3.7.1(ii) in Brillinger, 2001), and the �fth is because f�(!)R is real
and symmetric. The last term in the display is simply the (j; k)-th element of the right hand side
term in (A.2). This completes the proof.
Proof of Theorem 1. Lemma A.1 implies that G(�) de�ned by (9) is real, symmetric, positive
semide�nite and is equal to

1

2

Z �

��

�
@R(!; �0)

@�0

�0�@R(!; �0)
@�0

�
d!:
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This allows us adopt the arguments in Theorem 1 in Rothenberg (1971) to prove the result.
Suppose �0 is not locally identi�ed. Then, there exists an in�nite sequence of vectors f�kg1k=1

approaching �0 such that, for each k,

R(!; �0) = R(!; �k) for all ! 2 [��; �] .

For an arbitrary ! 2 [��; �]; by the mean value theorem and the di¤erentiability of f�(!) in �;

0 = Rj(!; �k)�Rj(!; �0) =
@Rj(!;e�(j; !))

@�0
(�k � �0);

where the subscript j denotes the j-th element of the vector and e�(j; !) lies between �k and �0 and
in general depends on both ! and j. Let

dk =
�k � �0
k�k � �0k

;

then
@Rj(!;e�(j; !))

@�0
dk = 0 for every k.

The sequence fdkg is an in�nite sequence on the unit sphere and therefore there exists a limit point
d (note that d does not depend on j or !). As �k ! �0; dk approaches d and we have

lim
k!1

@Rj(!;e�(j; !))
@�0

dk =
@Rj(!; �0)

@�0
d = 0;

where the convergence result holds because f�(!) is continuously di¤erentiable in � (Assumption
3). Because this holds for an arbitrary j, it holds for the full vector R(!; �0): Therefore

@R(!; �0)

@�0
d = 0;

which implies

d0
�
@R(!; �0)

@�0

�0�@R(!; �0)
@�0

�
d = 0:

Because the above result holds for an arbitrary ! 2 [��; �]; it also holds when integrating over
[��; �]: Thus

d0
�Z �

��

�
@R(!; �0)

@�0

�0�@R(!; �0)
@�0

�
d!

�
d = 0:

Applying Lemma A1, because d 6= 0, G(�0) is singular.
To show the converse, suppose that G(�) has constant rank � < q in a neighborhood of �0

denoted by �(�0). Then, consider the characteristic vector c(�) associated with one of the zero roots
of G(�). Because Z �

��

�
@R(!; �)

@�0

�0�@R(!; �)
@�0

�
d! � c(�) = 0;
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we have Z �

��

�
@R(!; �)

@�0
c(�)

�0�@R(!; �)
@�0

c(�)

�
d! = 0:

Since the integrand is continuous in ! and always non-negative, we must have�
@R(!; �)

@�0
c(�)

�0�@R(!; �)
@�0

c(�)

�
= 0

for all ! 2 [��; �] and all � 2 �(�0). Furthermore, this implies

@R(!; �)

@�0
c(�) = 0 (A.3)

for all ! 2 [��; �] and all � 2 �(�0). Because G(�) is continuous and has constant rank in �(�0),
the vector c(�) is continuous in �(�0). Consider the curve � de�ned by the function �(v) which
solves for 0� v � �v the di¤erential equation

@�(v)

@v
= c(�);

�(0) = �0:

Then,
@R(!; �(v))

@v
=
@R(!; �(v))

@�(v)0
@�(v)

@v
=
@R(!; �(v))

@�(v)0
c(�) = 0

for all ! 2 [��; �] and 0 � v � �v, where the last equality uses (A.3). Thus, R(!; �) is constant on
the curve �. This implies that f�(!) is constant on the same curve and that �0 is unidenti�able.
This completes the proof.
Proof of Corollary 1. The statement in the subsequent proof applies to all ! 2 [��; �]. Using
the same argument as in the proof of Lemma A.1, I(�0) can be rewritten as

I(�0) =
1

2�

Z �

��

�
@R(!; �0)

@�0

�0 ��
f�0(!)

R
��1 
 �f�0(!)R��1� @R(!; �0)@�0

d!: (A.4)

Because spectral density matrices are Hermitian and positive semide�nite, f�0(!)
R is real, sym-

metric and positive semide�nite (c.f. Lemma 3.7.1 (vii) in Brillinger, 2001). Further, because here
f�0(!) has full rank, f�0(!)

R is in fact positive de�nite. Thus, (
�
f�0(!)

R
��1 
 �f�0(!)R��1) is

positive de�nite (c.f. Theorem 1 on page 28 in Magnus and Neudecker, 1999).
We now prove G(�0) and I(�0) have the same null space. Since they are both q � q matrices,

the result then implies they have the same rank. First, suppose c 2 Rq and I(�0)c = 0; then
c0I(�0)c = 0 or explicitlyZ �

��

�
@R(!; �0)

@�0
c

�0 ��
f�0(!)

R
��1 
 �f�0(!)R��1��@R(!; �0)@�0

c

�
d! = 0:

Because the integrand is continuous in ! and always non-negative, we must have�
@R(!; �0)

@�0
c

�0 ��
f�0(!)

R
��1 
 �f�0(!)R��1��@R(!; �0)@�0

c

�
= 0:
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Because
��
f�0(!)

R
��1 
 �f�0(!)R��1� is positive de�nite, this implies

@R(!; �0)

@�0
c = 0:

Therefore �
@R(!; �0)

@�0

�0�@R(!; �0)
@�0

c

�
= 0

and consequently G(�0)c = 0. Next, suppose c 2 Rq and G(�0)c = 0. Applying the same argument
that leads to (A.3), we have �

@R(!; �0)

@�0
c

�
= 0:

Then, trivially, �
@R(!; �0)

@�0

�0 ��
f�0(!)

R
��1 
 �f�0(!)R��1��@R(!; �0)@�0

c

�
= 0:

Upon integration, we have I(�0)c = 0.
Proof of Theorem 2. Using Lemma A.1 again, �G(��) can be equivalently represented as

�G(��) =
1

2

Z �

��

�
@R(!; �)

@��
0

�0�@R(!; �)
@��
0

�
d! +

�
@�(��)

@��
0

�0
@�(��)

@��
0

with both terms on the right hand side being real, symmetric and positive semide�nite. Let

�R(!; ��) =

24 R(!; �)

1p
�
�(��)

35 ;
then

�G(��) =
1

2

Z �

��

�
@ �R(!; ��)

@��
0

�0�
@ �R(!; ��)

@��
0

�
d!:

Using this representation, the proof proceeds in the same way as in Theorem 1, with � replaced by
�� and R(!; �) by �R(!; ��). The detail is omitted.
Proof of Corollary 3. We only prove the �rst result, as the second can be proven analogously
using the formulation in the proof of Theorem 2.

Suppose the subvector �s0 is not locally identi�ed. Write � = (�
s0; �r0)

0. There exists an in�nite
sequence of vectors f�kg1k=1 approaching �0 such that

R(!; �0) = R(!; �k) for all ! 2 [��; �] and each k.

By the de�nition of partial identi�cation, f�skg can be chosen such that k�sk � �s0k = k�k � �0k > "

with " being some arbitrarily small positive number. The values of �rk can either change or stay
�xed in this sequence; no restriction is imposed on them besides those in the preceding display. As
in the proof of Theorem 1, in the limit, we have

@R(!; �0)

@�0
d = 0;
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with ds 6= 0 (where ds is comprised of the elements in d that correspond to �s): Therefore, on one
hand,

G(�0)d = 0;

on the other hand, because ds 6= 0 and by de�nition @�s0=@�0 = [Idim(�s); 0dim(�r)], we have

@�s0
@�0

d = ds 6= 0;

which implies
Ga(�0)d 6= 0:

Thus, we have identi�ed a vector that falls into the orthogonal column space of G(�0) but not of
Ga(�0): Because the former orthogonal space always includes the latter as a subspace, this result
implies Ga(�0) has a higher column rank than G(�0).

To show the converse, suppose that G(�) and Ga(�) have constant ranks in a neighborhood of
�0 denoted by �(�0). Because the rank of G(�) is lower than that of Ga(�); there exists a vector
c(�) such that

G(�)c(�) = 0 but Ga(�)c(�) 6= 0;

which implies for all ! 2 [��; �] and all � 2 �(�0) (c.f. arguments leading to (A.3)):

@R(!; �)

@�0
c(�) = 0

but 24 @R(!; �)=@�0

@�s=@�0

35 c(�) =
24 0

cs(�)

35 6= 0;
where cs(�) denotes the elements in c(�) that correspond to �s. Because G(�) is continuous and
has constant rank in �(�0), the vector c(�) is continuous in �(�0). As in Theorem 1, consider the
curve � de�ned by the function �(v) which solves for 0� v � �v the di¤erential equation

@�(v)

@v
= c(�); �(0) = �0:

On one hand, because cs(�) 6= 0 and cs(�) is continuous in �; points on this curve correspond to
di¤erent �s: On the other hand,

@R(!; �(v))

@v
=
@R(!; �(v))

@�(v)0
@�(v)

@v
=
@R(!; �(v))

@�(v)0
c(�) = 0

for all ! 2 [��; �] and 0 � v � �v; implying f�(!) is constant on the same curve. Therefore, �s0 is
not locally identi�able.
Proof of Corollary 5. The proof is essentially the same as in Rothenberg (1971, Theorem 2), and
is included for the mater of completeness. Suppose 	(�) has rank s for all � in a neighborhood of
�0. Then, by the implicit function theorem, there exists a partition of � into �1 2 Rs and �2 2 Rq�s
such that

�1 = q(�2)

A-5



for all solutions of  (�) = 0 in a neighborhood of �0 with �20 being an interior point of that
neighborhood. Consequently, the spectral density can be rewritten as

f� (!) = fq(�2);�2 (!) ;

which involves only q � s parameters. Let

Q(�2) =
@q(�2)

@�20
and eG (�) = h Q(�2)0 I

i
G (�)

24 Q(�2)

I

35 :
Then, by Theorem 1, �0 is identi�ed if and only if eG (�0) has full rank.

Suppose there exists a vector d 2 Rq�s such that

eG (�0) d = 0: (A.5)

Then, the structure of G (�) (c.f. Lemma A1) implies that (A.5) holds if and only if

G (�0)

24 Q(�20)

I

35 d = 0:
Let

c =

24 Q(�20)

I

35 d;
then we have: (1) c 6= 0 if and only d 6= 0; and (2)24 G(�0)

	(�0)

35 c = 0
if and only if (A.5) holds, where	(�0)c = 0 always holds because �0 satis�es the constraint  (�) = 0:
Thus, the preceding matrix has full rank if and only if �0 is identi�ed under the constraints. This
completes the proof.
Proof of Corollary 6. Without loss of generality, assume nY = 1. Otherwise, the proof can be
carried out by analyzing R(!; �). The map � 7�! f� is in�nite dimensional. The proof therefore
involves two steps. The �rst is to reduce it to a �nite dimensional problem. The second is to apply
a constant rank theorem (a generalization of the implicit function theorem).

Consider a positive integer N and a partition of the interval [��; �] by !j = (2�j=2N )��; with
j = 0; 1; :::; 2N : Then, the following map is �nite dimensional:

� 7�! (f� (!0) ; :::; f� (!2N )): (A.6)

To simplify notation, let f�;N = (f� (!0) ; :::; f� (!2N ))
0. Conventionally, the rank of the above map

is de�ned as the rank of the Jacobian matrix @f�;N=@�0; which is of dimension (2N + 1)-by-q with
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rank no greater than q � 1 at �0, because if the rank equals q; then �0 becomes locally identi�ed,
contradicting the assumption in the corollary. Note that, for a given N , its rank can be strictly
less than q � 1.

We now show that there exists a �nite N such that @f�;N=@�0 has rank q � 1 at �0. Suppose
such an N does not exist. Then, the rank of @f�;N=@�0 is at most q � 2 for arbitrarily large N .
This implies that the rank of

GN (�0) =
2�

2N + 1

2NX
j=0

�
@f�0(!j)

@�0

�0�@f�0(!j)
@�0

�

is at most q�2 for arbitrarily large N; because vectors orthogonal to @f�;N=@�0 are also orthogonal
toGN (�) by construction. Let �N;j (j = 1; :::; q) be the eigenvalues ofGN (�0) sorted in an increasing
order. Then, for any �nite N ,

�N;1 = �N;2 = 0:

On the other hand, because GN (�0) ! G(�0); so do its eigenvalues. Thus, for any " > 0; there
exists a �nite N such that j�2 � �N;2j < ", where �2 is the second smallest eigenvalue of G(�0).
Choosing " = �2=2 leads to

j�N;2j > �2=2:

Since rank(G(�0)) = q � 1 by Assumption, �2 is strictly positive. Thus, we reach a contradiction.
Because the convergence of GN (�) ! G(�) is uniform in an open neighborhood of �0; say �(�0),
the above analysis also implies there exists an N such that @f�;N=@�0 has constant rank q � 1 in
that neighborhood.

Use such an N and consider again the map � 7�! f�;N ; which is �nite dimensional, continuously
di¤erentiable and has constant rank q � 1 in �(�0). De�ne the level set

f� 2 �(�0) : f�;N = f�0;Ng :

Then, the rank theorem (Krantz and Parks 2002, Theorem 3.5.1 and the discussion on page 56)
implies that the level set constitutes a smooth, parameterized one dimensional manifold. Thus,
there exists a unique level curve passing through �0 satisfying f�;N = f�0;N :

Therefore, we have established the result for a particular �nite N . Further increasing N leads
to �ner partitions of [��; �]. This cannot decrease the rank of the map (A.6), therefore cannot
increase the number of level curves passing through �0. Thus, in the limit, there is at most one
level curve passing through �0. The existence of such a curve for the in�nite dimensional case has
already been shown in the main text, given by (10). This completes the proof.
Proof of Lemma 1. Applying Lemma A.3.3 (1) in Hosoya and Taniguchi (1982), for a given
� 2 �, we have

plim
T!1

1

T

T�1X
j=1

tr
�
W (!j)f

�1
� (!j)IT (!j)

	
=
1

2�

Z �

��
tr
�
W (!)f�1� (!)f�0 (!)

	
dw:
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To prove stochastic equicontinuity, consider for any �1; �2 2�

1

T

T�1X
j=1

tr
n
W (!j)

�
f�1�1 (!j)� f

�1
�2
(!j)

�
IT (!j)

o
:

Apply a �rst order Taylor expansion,

1

T

T�1X
j=1

tr
n
W (!j)

�
f�1�1 (!j)� f

�1
�2
(!j)

�
IT (!j)

o

=
1

T

T�1X
j=1

@tr
n
W (!j)f

�1e� (!j)IT (!j)
o

@�0
(�1 � �2)

= � 1
T

T�1X
j=1

W (!j) vec
�
IT (!j)

0�0 ff�1e� (!j)
0 
 f�1e� (!j)g

@ vec
�
fe�(!j)�
@�0

(�1 � �2) ; (A.7)

where e� lies between �1 and �2. The norm of (A.7) is bounded by

1

T

T�1X
j=1



vec �IT (!j)0�







ff�1e� (!j)

0 
 f�1e� (!j)g
@ vec

�
fe�(!j)�
@�0






 k�1 � �2k :
The quantity 




(f�1e� (!j)

0 
 f�1e� (!j))
@ vec

�
fe�(!j)�
@�0







is uniformly bounded by Assumption 5(ii). The term T�1

PT�1
j=1



vec(IT (!j)0)

 only depends on
�0 and is Op (1) because the diagonal elements of T�1

PT�1
j=1 IT (!j) are positive and satisfy a law

of large numbers (Hosoya and Taniguchi, 1982, Lemma A.3.3 (1)), and the norm of the o¤-diagonal
elements can be bounded by the diagonal elements using the Cauchy�Schwarz inequality. Therefore,
the term (A.7) can be made uniformly small by choosing a small k�1 � �2k. Meanwhile,

1

T

T�1X
j=1

W (!j) log det f�(!j)!
1

2�

Z �

��
W (!) log det f�(!)dw

uniformly in � 2�. Thus, the �rst result holds.
For the second result, we �rst show that �0 maximizes L1 (�). Apply the same argument as

in Hosoya and Taniguchi (1982, p.149). For every ! 2 [��; �]

W (!)
�
log det f�(!) + tr

�
f�1� (!)f�0 (!)

	�
= W (!) log det f�0(!) +W (!)

�
tr
�
f�1� (!)f�0 (!)

	
� log det

�
f�1� (!)f�0(!)

	�
= W (!) log det f�0(!) +W (!)

24 nYX
j=1

�j(!)� log �j(!)� 1

35+W (!)nY ;
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where �j(!) is the j-th eigenvalue of f�1� (!)f�0(!): Because �j(!) � log �j(!) � 1 � 0 and the
equality holds if and only if �j(!) = 1; j = 1; :::; nY : This implies

L1 (�) � �
1

2�

Z �

��
W (!) (log det f�0(!) + nY ) d!;

which holds with equality if and only if �j(!) = 1 for all ! 2 [��; �] (j = 1; :::; nY ). However,
�j(!) = 1 (j = 1; :::; nY ) imply f�0(!) = f�(!) because the latter are positive de�nite Hermitian
matrices. Hence, �0 is a global maximizer.

The above result implies that any other parameter vector, say �1, is a maximizer if and only
if f�1(!) = f�0(!) for all ! 2 [��; �]. Now, suppose the parameters are locally identi�ed. Then,
there are no parameter values close to �0 satisfying this equality. Thus, �0 is the locally unique
maximizer. To see the converse, suppose �0 is the locally unique maximizer, then, there cannot be
any parameter close to �0 satisfying f�0(!) = f�(!) for all !: Thus, by de�nition, we have local
identi�cation. The argument to establish the result for the global identi�cation proceeds in the
same way.

The third result follows directly from the uniform weak law of large numbers.
Proof of Theorem 3. We only prove the second result which includes the �rst as a special case.
The �rst order condition gives

2�T�1=2
T�1X
j=0

W (!j)
@vec

�
fb��T (!j)0

�0
@��

�
f�1b��T (!j)0 
 f�1b��T (!j)

�
vec(IT (!j)� fb��T (!j))

+2T�1=2
TX
t=1

@�(b��T )0
@��

f�1b��T (0)
�
Yt��(b��T )� = 0:

Note that the �rst summation starts at j = 0 and IT (0) = Ib��T ;T (0). The above FOC implies

2�T�1=2
T�1X
j=0

W (!j)
@ vec(f�0(!j)

0)0

@��

�
f�1�0 (!j)

0 
 f�1�0 (!j)
�
vec
�
IT (!j)� fb��T (!j)

�

+2T�1=2
TX
t=1

@�(��0)
0

@��
f�1�0 (0)(Yt��(

b��T )) = op(1);

which holds because b��T !p ��0; f�0(!j) and �(��0) are continuously di¤erentiable, and that f
�1
�0
(!j)

have bounded eigenvalues. Apply a �rst order Taylor expansion around ��0; then the left hand side
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of the preceding display is equal to

2�T�1=2
T�1X
j=0

W (!j)
@vec(f�0(!j)

0)0

@��

�
f�1�0 (!j)

0 
 f�1�0 (!j)
�
vec (IT (!j)� f�0(!j)) (I) (A.8)

+2T�1=2
TX
t=1

@�(��0)
0

@��
f�1�0 (0)

�
Yt��(��0)

�
(II)

�2�T�1
T�1X
j=0

W (!j)
@vec(f�0(!j)

0)0

@��

�
f�1�0 (!j)

0 
 f�1�0 (!j)
� @vec (f�0(!j))

@��
0 T 1=2(b�� � ��0) (III)

�2@�(
��0)

0

@��
f�1�0 (0)

@�(��0)

@��
0 T 1=2(b�� � ��0) (IV)

+op(1):

First consider term (III), the quantity in front of T 1=2(b�� � ��0) converges toZ �

��
W (!)

@vec(f�0(!)
0)0

@��

�
f�1�0 (!)

0 
 f�1�0 (!)
� @vec (f�0(!))

@��
0 d!;

whose (h; k)-th element is given byZ �

��
tr

(
W (!)f�0(!)

@f�1�0 (!)

@��h
f�0(!)

@f�1�0 (!)

@��k

)
d!:

Therefore, the above expansion implies (c.f. Theorem 3 for the de�nition of �M)

T 1=2(b�� � ��0) = �M�1 � (I) + �M�1 � (II) + op(1):

Term (I) satis�es a central limit theorem, whose covariance matrix has the (h; k)-th element given
by (see Theorem 3.1 and Proposition 3.1 in Hosoya and Taniguchi (1982), in particular, their
formula for Ujl)

4�

Z �

��
W (!)tr

(
f�0(!)

@f�1�0 (!)

@��h
f�0(!)

@f�1�0 (!)

@��k

)
d!

+
X

n�
a;b;c;d=1�abcd

"
1

2�

Z �

��
W (!)H�(!)

@f�1�0 (!)

@��h
H(!)d!

#
ab

�
"
1

2�

Z �

��
W (!)H�(!)

@f�1�0 (!)

@��k
H(!)d!

#
cd

;

Term (II) also satis�es CLT, with covariance matrix given by

8�
@�(��0)

0

@��
f�1�0 (0)

@�(��0)

@��
0 :

To complete the proof, we only need to verify the covariance matrix between (I) and (II). Let

A =Cov((I); (II))
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and consider its (h; k)-th element:

Ahk = 4�Cov

8<:tr
0@ 1p

T

T�1X
j=0

W (!j)
@f�1�0 (!j)

@��h
(IT (!j)� f�0(!))

1A ;

 
1p
T

@�(��0)
0

@��k
f�1�0 (0)

TX
t=1

�
Yt � �(��0)

�!9=;
De�ne

�h(!j) =
@f�1�0 (!j)

@��h
and  k(0) =

@�(��0)
0

@��k
f�1�0 (0):

Then,

Ahk

= 4�Cov

8<:tr
0@ 1p

T

T�1X
j=0

W (!j)�
h(!j) (IT (!j)� f�0(!))

1A ;

 
1p
T
 k(0)

TX
t=1

�
Yt � �(��0)

�!9=;
= 4�Cov

8<: 1p
T

T�1X
j=0

W (!j)

nYX
a;b=1

�hab(!j)(ITba (!j)� f�0ba(!));
1p
T

nYX
c=1

 kc (0)

TX
t=1

�
Ytc � �c(��0)

�9=;
= 4�

nYX
a;b;c=1

Cov

8<: 1p
T

T�1X
j=0

W (!j)�
h
ab(!j)(ITba (!j)� f�0ba(!));

1p
T
 kc (0)

TX
t=1

�
Ytc � �c(��0)

�9=; ;

where ITba (!j) is the (b; a)-th element of IT (!j) and other quantities are de�ned analogously.
Consider the two terms inside the curly brackets separately. Applying the same argument as in
Theorem 10.8.5 in Brockwell and Davis (1991), we have

1p
T

T�1X
j=0

W (!j)�
h
a;b(!j)(ITba (!j)� f�0ba(!))

=
1p
T

T�1X
j=0

n�X
f;g=1

W (!j)�
h
ab(!j)Hbf (!j)

�
I�Tfg (!j)� EI�Tfg (!j)

�
H�
ga(!j) + op(1);

where and I�Tfg (!j) denote the (f; g)-th element of the periodogram of �t. Apply Theorem 10.3.1
in Brockwell and Davis (1991), we have

1p
T
 kc (0)

TX
t=1

�
Ytc � �c(��0)

�
=

1p
T

n�X
l=1

TX
t=1

 kc (0)Hcl(0)�tl + op(1);

where H(0) =
P1
j=0 hj(�0) (c.f. (3)). Therefore, their covariance is equal to

1

T

TX
t=1

T�1X
j=0

n�X
f;g;l=1

W (!j)�
h
ab(!j)Hbf (!j)H

�
ga(!j) 

k
c (0)Hcl(0)E

��
I�Tfg (!j)� EI�Tfg (!j)

�
�tl
	
+ op(1)

=
1

T

TX
t=1

n�X
f;g;l=1

W (!j)�
h
ab(!j)Hbf (!j)H

�
ga(!j) 

k
c (0)Hcl(0)�fgl + op(1)

=
1

2�

n�X
f;g;l=1

�Z �

��
W (!)H�(!)ga�

h
ab(!)Hbf (!j)d!

�
� �fgl �

n
 kc (0)Hcl(0)

o
+ op(1):
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Some algebra shows that

Ahk = 2

n�X
f;g;l=1

"Z �

��
W (!)H(!)�

@f�1�0 (!)

@��h
H(!)d!

#
gf

� �gfl �
�
@�(��0)

0

@��k
f�1�0 (0)H(0)

�
l

:

Proof of Corollary 7. We will prove the second result. Because the argument is very similar
to Theorem 3 and Taniguchi (1979, Theorem 2), we will only provide an outline. The estimate b��
solves

@ �LT (
b��)

@��
= 0 (A.9)

and the pseudo-true value ��m0 satis�es

@ �Lm1
�
��
m
0

�
@��

= 0: (A.10)

Consider a Taylor expansion of (A.9) around ��m0 :

@ �LT
�
��
m
0

�
@��

+
@2 �LT (

e��)
@��@��

0 (
b�� � ��m0 ) = 0;

where e�� lies between b�� and ��m0 . Rearrange terms and apply (A.10):
T 1=2

�b�� � ��m0 � =
"
�2�
T

@2 �LT (
e��)

@��@��
0

#�1 
2�T�1=2

@ �LT
�
��
m
0

�
@��

� 2�T 1=2
@ �Lm1

�
��
m
0

�
@��

!
:

Further,

�2�
T

@2 �LT (
e��)

@��@��
0

!
Z �

��
W (!)

�
@2

@��@��
0 log det(f�m0 (!)) +

@2

@��@��
0 tr
n
f�1�m0

(!)f0(!)
o�
+ 2

@�(��
m
0 )

0

@��
f�1�m0

(0)
@�(��

m
0 )

@��
0

because e�� !p ��
m
0 and the continuity of integrand. Also,

2�T�1=2
@ �LT

�
��
m
0

�
@��

� 2�T 1=2
@ �Lm1

�
��
m
0

�
@��

= �2�T�1=2
T�1X
j=1

W (!j)
@

@��
tr
n
f�1��m0

(!j) (IT (!j)� f0(!))
o

+2T�1=2
TX
t=1

@�(��
m
0 )

0

@��
f�1�m0

(0) (Yt��0) + op (1)

= (M1) + (M2) + op (1) :

Terms (M1) and (M2) satisfy a central limit theorem and can be analyzed in the same way as
terms (I) and (II) in (A.8). The limiting covariance matrix can be veri�ed accordingly. The detail
is omitted.
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Proof of Theorem 4: It su¢ ces to verify that Assumptions 1 to 4 in Chernozhukov and Hong
(2003) hold under our set of conditions. Relabel these assumptions as CH1 to CH4. CH1 and CH2
are trivial. CH3 is implied by Lemma 1(1), 1(2) and 1(4). To verify CH4, applying a second order
Taylor expansion of LT (�) around �0 (c.f. CH4(i)):

LT (�)� LT (�0) = (� � �0)0
@LT (�0)

@�
+
1

2
(� � �0)0

@2LT (�0)

@�@�0
(� � �0) +RT (�)

with

RT (�) = (� � �0)0
(
@2LT (e�T )
@�@�0

� @2LT (�0)

@�@�0

)
(� � �0);

where e�T lies between � and �0. Now,
T�1=2

@LT (�0)

@�
!d N(0; V );

therefore CH4(ii) is satis�ed (V corresponds to 
n in CH4). For CH4(iii), note that V is nonrandom
and positive de�nite, and that

�T�1@
2LT (�0)

@�@�0

= T�1
T�1X
j=1

W (!j)

�
@ vec(f�0(!j)

0)

@�0

�0 n
f�1�0 (!j)

0 
 f�1�0 (!j)
o�@ vec(f�0(!j))

@�0

�

=
1

2�

Z �

��
W (!j)

�
@ vec(f�0(!)

0)

@�0

�0 n
f�1�0 (!)

0 
 f�1�0 (!)
o�@ vec(f�0(!))

@�0

�
d! + o(1);(A.11)

where the leading term on the right hand side is a nonrandom and positive de�nite because f�1�0 (!)
and Z �

��
W (!j)

�
@ vec(f�0(!)

0)

@�0

�0�@ vec(f�0(!))
@�0

�
d!

are positive de�nite by Assumption 5 and local identi�cation. It is O(1) because the integrand is
bounded, see Assumption 5. Therefore CH4(iii) is satis�ed. CH4(iv.a) holds because

jRT (�)j �



T 1=2(� � �0)


2






T�1@2LT (e�T )@�@�0
� T�1@

2LT (�0)

@�@�0






 ;
where the second term can be made arbitrarily small by choosing k� � �0k small because of (A.11)
and the boundedness and continuity of @ vec(f�(!))=@�0 and f

�1
� (!) in � (Assumptions 3 and 5(ii)).

CH4(iv.b) holds because of the preceding argument and the fact that


T 1=2(� � �0)

2 = O(1).

The proof for b��T involves the same argument and is therefore omitted.
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Table 1: Parameter values and the corresponding two smallest eigenvalues

along the non-identi�cation curve

 1  2 �r �2r �1 �2

�0 1.500000 0.125000 0.750000 0.400000 7.09E-10 3.251348

Panel (a). Direction 1

�1 1.507156 0.112571 0.749192 0.399139 1.47E-10 3.266554

�2 1.514316 0.100134 0.748378 0.398272 4.73E-10 3.281960

�3 1.521476 0.087698 0.747559 0.397401 9.56E-10 3.297558

�4 1.528636 0.075262 0.746735 0.396525 1.15E-09 3.313348

�5 1.535796 0.062827 0.745905 0.395644 5.33E-10 3.329337

�6 1.542955 0.050392 0.745070 0.394758 1.79E-09 3.345526

�7 1.550114 0.037958 0.744229 0.393868 1.90E-09 3.361918

�8 1.557272 0.025524 0.743383 0.392973 1.82E-10 3.378520

�9 1.564431 0.013091 0.742531 0.392073 1.80E-09 3.395333

�10 1.571589 0.000659 0.741674 0.391168 1.79E-10 3.412362

Panel (b). Direction 2

��1 1.449285 0.213085 0.755581 0.405975 2.19E-10 3.148993

��2 1.398558 0.301193 0.760920 0.411732 1.30E-11 3.054759

��3 1.347819 0.389321 0.766031 0.417282 5.23E-13 2.967750

��4 1.297070 0.477467 0.770930 0.422636 1.12E-12 2.887193

��5 1.246311 0.565629 0.775628 0.427803 3.63E-12 2.812419

��6 1.195543 0.653807 0.780138 0.432793 6.18E-12 2.742843

��7 1.144767 0.741998 0.784471 0.437615 3.12E-12 2.677957

��8 1.093985 0.830202 0.788638 0.442275 3.33E-12 2.617315

��9 1.043195 0.918417 0.792647 0.446783 4.15E-12 2.560521

��10 0.992400 1.006643 0.796507 0.451145 3.76E-12 2.507230
Note. �j represent equally spaced points taken from the non-identi�cation curve
extended from �0 for 14475 steps in Direction 1, and for 101972 steps in Direction
2. �1 and �2 represent the smallest and the second smallest eigenvalues of G(�i)s

respectively. The step size of the approximation is 10�5. Along Direction 1, the
curve is truncated at the closest point to zero where  2 is still positive, as it de-
termines the output weight in the Taylor rule and must be nonnegative. Along
Direction 2, the curve is truncated at the last point yielding a determinate solution.
Results are rounded to the nearest sixth digit to the right of decimal.



Table 2: Deviations of spectra across frequencies (direction 1)

Spectral density matrix element number

(1,1) (2,1) (3,1) (4,1) (2,2) (3,2) (4,2) (3,3) (4,3) (4,4)

Measure 1: Maximum absolute deviations across frequencies

�1 1.49E-07 1.68E-08 9.85E-08 1.68E-08 1.99E-08 1.26E-08 1.99E-08 5.80E-08 1.26E-08 1.99E-08

�2 2.96E-07 3.40E-08 1.97E-07 3.40E-08 3.98E-08 2.52E-08 3.98E-08 1.16E-07 2.52E-08 3.98E-08

�3 4.43E-07 5.11E-08 2.94E-07 5.11E-08 5.83E-08 3.68E-08 5.83E-08 1.75E-07 3.68E-08 5.83E-08

�4 5.93E-07 7.13E-08 3.97E-07 7.13E-08 7.76E-08 4.87E-08 7.76E-08 2.36E-07 4.87E-08 7.76E-08

�5 7.35E-07 8.51E-08 4.88E-07 8.51E-08 9.78E-08 6.18E-08 9.78E-08 2.89E-07 6.18E-08 9.78E-08

�6 8.82E-07 1.02E-07 5.86E-07 1.02E-07 1.18E-07 7.43E-08 1.18E-07 3.47E-07 7.43E-08 1.18E-07

�7 1.04E-06 1.24E-07 6.92E-07 1.24E-07 1.37E-07 8.64E-08 1.37E-07 4.11E-07 8.64E-08 1.37E-07

�8 1.19E-06 1.37E-07 7.88E-07 1.37E-07 1.59E-07 1.01E-07 1.59E-07 4.64E-07 1.01E-07 1.59E-07

�9 1.34E-06 1.57E-07 8.91E-07 1.57E-07 1.79E-07 1.13E-07 1.79E-07 5.27E-07 1.13E-07 1.79E-07

�10 1.49E-06 1.76E-07 9.94E-07 1.76E-07 1.99E-07 1.25E-07 1.99E-07 5.89E-07 1.25E-07 1.99E-07

Measure 2: Maximum absolute deviations across frequencies in relative form

�1 6.66E-09 2.11E-09 7.03E-09 2.11E-09 8.19E-10 7.02E-09 9.83E-09 6.34E-09 7.02E-09 9.83E-09

�2 1.32E-08 4.28E-09 1.40E-08 4.28E-09 1.64E-09 1.40E-08 1.97E-08 1.26E-08 1.40E-08 1.97E-08

�3 1.98E-08 6.43E-09 2.10E-08 6.43E-09 2.44E-09 2.06E-08 2.89E-08 1.91E-08 2.06E-08 2.89E-08

�4 2.65E-08 8.97E-09 2.83E-08 8.97E-09 3.32E-09 2.75E-08 3.87E-08 2.58E-08 2.75E-08 3.87E-08

�5 3.28E-08 1.07E-08 3.48E-08 1.07E-08 4.08E-09 3.45E-08 4.85E-08 3.15E-08 3.45E-08 4.85E-08

�6 3.94E-08 1.29E-08 4.18E-08 1.29E-08 4.91E-09 4.15E-08 5.83E-08 3.78E-08 4.15E-08 5.83E-08

�7 4.62E-08 1.56E-08 4.93E-08 1.56E-08 5.80E-09 4.85E-08 6.83E-08 4.49E-08 4.85E-08 6.83E-08

�8 5.29E-08 1.73E-08 5.62E-08 1.73E-08 6.60E-09 5.62E-08 7.89E-08 5.07E-08 5.62E-08 7.89E-08

�9 5.98E-08 1.97E-08 6.35E-08 1.97E-08 7.46E-09 6.31E-08 8.87E-08 5.75E-08 6.31E-08 8.87E-08

�10 6.66E-08 2.22E-08 7.09E-08 2.22E-08 8.34E-09 7.01E-08 9.86E-08 6.43E-08 7.01E-08 9.86E-08

Measure 3: Maximum relative deviations across frequencies

�1 7.57E-09 3.01E-08 2.01E-08 3.01E-08 4.64E-09 9.15E-09 1.20E-08 6.34E-09 9.15E-09 1.20E-08

�2 1.48E-08 6.36E-08 4.14E-08 6.36E-08 9.33E-09 1.83E-08 2.41E-08 1.26E-08 1.83E-08 2.41E-08

�3 2.25E-08 8.82E-08 5.91E-08 8.82E-08 1.36E-08 2.68E-08 3.53E-08 1.91E-08 2.68E-08 3.53E-08

�4 2.96E-08 1.27E-07 8.27E-08 1.27E-07 1.82E-08 3.56E-08 4.72E-08 2.58E-08 3.56E-08 4.72E-08

�5 3.69E-08 1.54E-07 1.01E-07 1.54E-07 2.29E-08 4.50E-08 5.93E-08 3.15E-08 4.50E-08 5.93E-08

�6 4.42E-08 1.89E-07 1.23E-07 1.89E-07 2.76E-08 5.41E-08 7.13E-08 3.78E-08 5.41E-08 7.13E-08

�7 5.13E-08 2.31E-07 1.48E-07 2.31E-07 3.23E-08 6.31E-08 8.34E-08 4.49E-08 6.31E-08 8.34E-08

�8 5.91E-08 2.60E-07 1.68E-07 2.60E-07 3.74E-08 7.33E-08 9.66E-08 5.07E-08 7.33E-08 9.66E-08

�9 6.67E-08 2.92E-07 1.89E-07 2.92E-07 4.20E-08 8.22E-08 1.08E-07 5.75E-08 8.22E-08 1.08E-07

�10 7.42E-08 3.28E-07 2.12E-07 3.28E-07 4.67E-08 9.13E-08 1.21E-07 6.43E-08 9.13E-08 1.21E-07

Note. �1 to �10 are as de�ned in Table 1. The upper triangular elements are omitted due to symmetry.



Table 3: Deviations of spectra across frequencies (direction 2)

Spectral density matrix element number

(1,1) (2,1) (3,1) (4,1) (2,2) (3,2) (4,2) (3,3) (4,3) (4,4)

Measure 1: Maximum absolute deviations across frequencies

��1 8.49E-07 8.20E-08 5.00E-07 8.20E-08 1.45E-07 9.87E-08 1.45E-07 2.52E-07 9.87E-08 1.45E-07

��2 1.69E-06 1.59E-07 1.01E-06 1.59E-07 2.75E-07 1.86E-07 2.75E-07 5.28E-07 1.86E-07 2.75E-07

��3 2.52E-06 2.34E-07 1.53E-06 2.34E-07 3.95E-07 2.64E-07 3.95E-07 8.18E-07 2.64E-07 3.95E-07

��4 3.35E-06 3.07E-07 2.06E-06 3.07E-07 5.04E-07 3.34E-07 5.04E-07 1.13E-06 3.34E-07 5.04E-07

��5 4.17E-06 3.83E-07 2.60E-06 3.83E-07 6.02E-07 3.96E-07 6.02E-07 1.46E-06 3.96E-07 6.02E-07

��6 4.99E-06 4.64E-07 3.16E-06 4.64E-07 6.91E-07 4.50E-07 6.91E-07 1.80E-06 4.50E-07 6.91E-07

��7 5.80E-06 5.58E-07 3.72E-06 5.58E-07 7.72E-07 4.98E-07 7.72E-07 2.17E-06 4.98E-07 7.72E-07

��8 6.62E-06 6.76E-07 4.30E-06 6.76E-07 8.44E-07 5.39E-07 8.44E-07 2.55E-06 5.39E-07 8.44E-07

��9 7.43E-06 8.17E-07 4.89E-06 8.17E-07 9.10E-07 5.75E-07 9.10E-07 2.95E-06 5.75E-07 9.10E-07

��10 8.26E-06 9.74E-07 5.50E-06 9.74E-07 9.67E-07 6.04E-07 9.67E-07 3.38E-06 6.04E-07 9.67E-07

Measure 2: Maximum absolute deviations across frequencies in relative form

��1 3.79E-08 1.62E-08 3.56E-08 1.62E-08 3.65E-09 4.78E-08 6.30E-08 2.75E-08 4.78E-08 6.30E-08

��2 7.56E-08 3.07E-08 7.22E-08 3.07E-08 7.67E-09 9.22E-08 1.23E-07 5.76E-08 9.22E-08 1.23E-07

��3 1.13E-07 4.37E-08 1.09E-07 4.37E-08 1.18E-08 1.34E-07 1.79E-07 8.93E-08 1.34E-07 1.79E-07

��4 1.50E-07 5.55E-08 1.47E-07 5.55E-08 1.62E-08 1.73E-07 2.33E-07 1.23E-07 1.73E-07 2.33E-07

��5 1.86E-07 6.55E-08 1.86E-07 6.55E-08 2.07E-08 2.09E-07 2.84E-07 1.59E-07 2.09E-07 2.84E-07

��6 2.23E-07 7.42E-08 2.25E-07 7.42E-08 2.54E-08 2.42E-07 3.32E-07 1.97E-07 2.42E-07 3.32E-07

��7 2.59E-07 8.06E-08 2.65E-07 8.06E-08 3.01E-08 2.72E-07 3.76E-07 2.37E-07 2.72E-07 3.76E-07

��8 2.96E-07 8.50E-08 3.07E-07 8.50E-08 3.47E-08 3.00E-07 4.17E-07 2.79E-07 3.00E-07 4.17E-07

��9 3.32E-07 1.03E-07 3.49E-07 1.03E-07 3.92E-08 3.25E-07 4.55E-07 3.22E-07 3.25E-07 4.55E-07

��10 3.69E-07 1.22E-07 3.92E-07 1.22E-07 4.39E-08 3.48E-07 4.90E-07 3.69E-07 3.48E-07 4.90E-07

Measure 3: Maximum relative deviations across frequencies

��1 4.78E-08 1.32E-07 9.81E-08 1.32E-07 3.22E-08 6.66E-08 8.37E-08 5.00E-08 6.66E-08 8.37E-08

��2 9.58E-08 2.46E-07 1.89E-07 2.46E-07 6.14E-08 1.27E-07 1.60E-07 9.41E-08 1.27E-07 1.60E-07

��3 1.43E-07 3.59E-07 2.78E-07 3.59E-07 8.84E-08 1.82E-07 2.31E-07 1.34E-07 1.82E-07 2.31E-07

��4 1.89E-07 4.65E-07 3.64E-07 4.65E-07 1.13E-07 2.32E-07 2.96E-07 1.69E-07 2.32E-07 2.96E-07

��5 2.34E-07 5.67E-07 4.48E-07 5.67E-07 1.36E-07 2.78E-07 3.57E-07 2.00E-07 2.78E-07 3.57E-07

��6 2.80E-07 6.66E-07 5.31E-07 6.66E-07 1.56E-07 3.19E-07 4.12E-07 2.27E-07 3.19E-07 4.12E-07

��7 3.24E-07 7.62E-07 6.12E-07 7.62E-07 1.75E-07 3.56E-07 4.63E-07 2.50E-07 3.56E-07 4.63E-07

��8 3.69E-07 8.55E-07 6.92E-07 8.55E-07 1.92E-07 3.89E-07 5.09E-07 2.79E-07 3.89E-07 5.09E-07

��9 4.13E-07 9.47E-07 7.71E-07 9.47E-07 2.07E-07 4.19E-07 5.51E-07 3.22E-07 4.19E-07 5.51E-07

��10 4.57E-07 1.04E-06 8.51E-07 1.04E-06 2.21E-07 4.44E-07 5.90E-07 3.69E-07 4.44E-07 5.90E-07

Note. ��1 to ��10 are as de�ned in Table 1. The upper triangular elements are omitted due to symmetry.



Table 4: Rank sensitivity analysis

Di¤erentiation step size � �0

1E-02 1E-03 1E-04 1E-05 1E-06 1E-07 1E-08 1E-09

TOL

Rank of G(�0) in the 13-parameter model

1E-02 10 10 10 10 10 10 10 10

1E-03 10 10 10 10 10 10 10 10

1E-04 11 10 10 10 10 10 10 10

1E-05 11 10 10 10 10 10 10 10

1E-06 11 11 10 10 10 10 10 11

1E-07 12 11 10 10 10 10 10 11

1E-08 12 12 11 10 10 10 11 12

1E-09 12 12 11 10 10 10 11 12

1E-10 12 12 12 11 10 10 12 12

Default 12 12 11 10 10 10 11 12

Rank of G(�0) in the 11-parameter model

1E-02 10 10 10 10 10 10 10 10

1E-03 10 10 10 10 10 10 10 10

1E-04 11 10 10 10 10 10 10 10

1E-05 11 10 10 10 10 10 10 10

1E-06 11 11 10 10 10 10 10 11

1E-07 11 11 10 10 10 10 10 11

1E-08 11 11 11 10 10 10 11 11

1E-09 11 11 11 10 10 10 11 11

1E-10 11 11 11 11 10 10 11 11

Default 11 11 11 10 10 10 10 11

Note. TOL refers to the tolerance level used to determine the rank. Default refers to

the MATLAB default tolerance level.



Figure 1. The Non-identification curve (ψ1, ψ2, ρr, σ
2
r)
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Note. The non-identification curve is given by ∂θ(v)/∂v = c(θ), θ(0) = θ0, where c(θ) is the eigenvector corresponding to the only zero eigenvalue

of G(θ). The curve is computed recursively using the Euler method, so that θ(vj+1) = θ(vj) + c(θ(vj))h, where h is the step size, fixed at 1e-05.

(ψ1, ψ2, ρr, σ
2
r) change simultaneously along the curve in the indicated directions. Directions 1 and 2 are obtained by restricting the first element

of c(θ) to be positive or negative respectively. Since a negative Taylor rule weight contradicts economic theory, Direction 1 is truncated at the

last point where ψ2 is non-negative. Direction 2 is truncated at the boundary of the determinacy region. Consequently, the curve is extended

from θ0 for 14475 steps in Direction 1, and for 101972 steps in Direction 2.
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